并行核聚类方法工具箱

S. Mouysset, R. Guivarch
{"title":"并行核聚类方法工具箱","authors":"S. Mouysset, R. Guivarch","doi":"10.1049/cp.2019.0253","DOIUrl":null,"url":null,"abstract":"A large variety of fields such as biology, information retrieval, image segmentation needs unsupervised methods able to gather data without a priori information on shapes or locality. By investigating a parallel strategy based on overlapping domain decomposition, we present a toolbox which is a parallel implementation of two fully unsupervised kernel methods respectively based on density-based properties and spectral properties in order to treat large data sets in fields of pattern recognition.","PeriodicalId":397398,"journal":{"name":"10th International Conference on Pattern Recognition Systems (ICPRS-2019)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ParKerC: Toolbox for Parallel Kernel Clustering Methods\",\"authors\":\"S. Mouysset, R. Guivarch\",\"doi\":\"10.1049/cp.2019.0253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A large variety of fields such as biology, information retrieval, image segmentation needs unsupervised methods able to gather data without a priori information on shapes or locality. By investigating a parallel strategy based on overlapping domain decomposition, we present a toolbox which is a parallel implementation of two fully unsupervised kernel methods respectively based on density-based properties and spectral properties in order to treat large data sets in fields of pattern recognition.\",\"PeriodicalId\":397398,\"journal\":{\"name\":\"10th International Conference on Pattern Recognition Systems (ICPRS-2019)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"10th International Conference on Pattern Recognition Systems (ICPRS-2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/cp.2019.0253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th International Conference on Pattern Recognition Systems (ICPRS-2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/cp.2019.0253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多领域,如生物学、信息检索、图像分割等,都需要能够在没有先验形状或位置信息的情况下收集数据的无监督方法。通过研究一种基于重叠域分解的并行策略,我们提出了一个工具箱,该工具箱是两种完全无监督核方法的并行实现,分别基于基于密度的性质和基于谱的性质,以处理模式识别领域的大数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ParKerC: Toolbox for Parallel Kernel Clustering Methods
A large variety of fields such as biology, information retrieval, image segmentation needs unsupervised methods able to gather data without a priori information on shapes or locality. By investigating a parallel strategy based on overlapping domain decomposition, we present a toolbox which is a parallel implementation of two fully unsupervised kernel methods respectively based on density-based properties and spectral properties in order to treat large data sets in fields of pattern recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信