基于增长RBFN和强化学习的非线性系统控制研究

Hyun-Seob Cho
{"title":"基于增长RBFN和强化学习的非线性系统控制研究","authors":"Hyun-Seob Cho","doi":"10.1109/ICNC.2007.151","DOIUrl":null,"url":null,"abstract":"The proposed approach is neural-network based and combines the self-tuning principle with reinforcement learning. The proposed control scheme consists of a controller, a utility estimator, an exploration module, a learning module and a rewarding module. The controller and the utility estimator are implemented together in a single radial basis function network (RBFN). The learning method involves structural adaptation (growing RBFN) and parameter adaptation. No prior knowledge of the plant is assumed, and the controller has to begin with exploration of the state space. The exploration versus exploitation dilemma of reinforcement learning is solved through smooth transitions between the two modes. The controller is capable of asymptotically approaching the desired reference trajectory, which is showed in simulation result.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Study on the Control of Nonlinear System Using Growing RBFN and Reinforcement Learning\",\"authors\":\"Hyun-Seob Cho\",\"doi\":\"10.1109/ICNC.2007.151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proposed approach is neural-network based and combines the self-tuning principle with reinforcement learning. The proposed control scheme consists of a controller, a utility estimator, an exploration module, a learning module and a rewarding module. The controller and the utility estimator are implemented together in a single radial basis function network (RBFN). The learning method involves structural adaptation (growing RBFN) and parameter adaptation. No prior knowledge of the plant is assumed, and the controller has to begin with exploration of the state space. The exploration versus exploitation dilemma of reinforcement learning is solved through smooth transitions between the two modes. The controller is capable of asymptotically approaching the desired reference trajectory, which is showed in simulation result.\",\"PeriodicalId\":250881,\"journal\":{\"name\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2007.151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

该方法基于神经网络,结合了自调整原理和强化学习。该控制方案由控制器、效用估计器、探索模块、学习模块和奖励模块组成。控制器和效用估计器在单一径向基函数网络(RBFN)中一起实现。学习方法包括结构自适应(生长RBFN)和参数自适应。不假设对象的先验知识,控制器必须从探索状态空间开始。通过两种模式之间的平滑过渡,解决了强化学习的探索与利用困境。仿真结果表明,该控制器具有渐近逼近所需参考轨迹的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on the Control of Nonlinear System Using Growing RBFN and Reinforcement Learning
The proposed approach is neural-network based and combines the self-tuning principle with reinforcement learning. The proposed control scheme consists of a controller, a utility estimator, an exploration module, a learning module and a rewarding module. The controller and the utility estimator are implemented together in a single radial basis function network (RBFN). The learning method involves structural adaptation (growing RBFN) and parameter adaptation. No prior knowledge of the plant is assumed, and the controller has to begin with exploration of the state space. The exploration versus exploitation dilemma of reinforcement learning is solved through smooth transitions between the two modes. The controller is capable of asymptotically approaching the desired reference trajectory, which is showed in simulation result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信