基于迁移学习的优化算法自适应问题域

Chris Reinke, K. Doya
{"title":"基于迁移学习的优化算法自适应问题域","authors":"Chris Reinke, K. Doya","doi":"10.1109/ICIIBMS.2017.8279737","DOIUrl":null,"url":null,"abstract":"Optimization is one of the most important problems in science and engineering. Common optimization algorithms are designed to work for a large set of problems, but not necessarily to be efficient for specific domains. We propose a new transfer learning approach to adapt optimization algorithms to specific problem domains. Our approach analyzes solved problems of a domain to identify areas in the search space where good solutions are expected for this domain. Knowledge of these areas is used to improve the optimization algorithm performance of unseen problems of the same domain. Because of its general design, our method can be applied to a wide range of problems and algorithms.","PeriodicalId":122969,"journal":{"name":"2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptation of optimization algorithms to problem domains by transfer learning\",\"authors\":\"Chris Reinke, K. Doya\",\"doi\":\"10.1109/ICIIBMS.2017.8279737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimization is one of the most important problems in science and engineering. Common optimization algorithms are designed to work for a large set of problems, but not necessarily to be efficient for specific domains. We propose a new transfer learning approach to adapt optimization algorithms to specific problem domains. Our approach analyzes solved problems of a domain to identify areas in the search space where good solutions are expected for this domain. Knowledge of these areas is used to improve the optimization algorithm performance of unseen problems of the same domain. Because of its general design, our method can be applied to a wide range of problems and algorithms.\",\"PeriodicalId\":122969,\"journal\":{\"name\":\"2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIIBMS.2017.8279737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIBMS.2017.8279737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

优化是科学和工程中最重要的问题之一。常见的优化算法是为解决大量问题而设计的,但不一定对特定领域有效。我们提出了一种新的迁移学习方法,使优化算法适应特定的问题域。我们的方法分析一个领域已解决的问题,以确定搜索空间中该领域有望得到良好解决方案的区域。这些领域的知识被用来提高同一领域未见问题的优化算法的性能。由于其通用性设计,我们的方法可以应用于广泛的问题和算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptation of optimization algorithms to problem domains by transfer learning
Optimization is one of the most important problems in science and engineering. Common optimization algorithms are designed to work for a large set of problems, but not necessarily to be efficient for specific domains. We propose a new transfer learning approach to adapt optimization algorithms to specific problem domains. Our approach analyzes solved problems of a domain to identify areas in the search space where good solutions are expected for this domain. Knowledge of these areas is used to improve the optimization algorithm performance of unseen problems of the same domain. Because of its general design, our method can be applied to a wide range of problems and algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信