黎曼流形上有跳跃的随机微分方程解的分部积分公式

Hirotaka Kai, Atsushi Takeuchi
{"title":"黎曼流形上有跳跃的随机微分方程解的分部积分公式","authors":"Hirotaka Kai, Atsushi Takeuchi","doi":"10.31390/josa.2.3.12","DOIUrl":null,"url":null,"abstract":"Consider solutions to Marcus-type stochastic differential equations with jumps on the bundle of orthonormal frames O(M) over a Riemannian manifold M , and define the M -valued process by its canonical projection, which is parallel to the Eells-Elworthy-Malliavin construction of Brownian motions on M . In the present paper, the integration by parts formula for such jump processes is studied, and the strategy is based upon the calculus on Brownian motions via the Kolmogorov backward equations. The celebrated Bismut formula can be also obtained in our setting.","PeriodicalId":263604,"journal":{"name":"Journal of Stochastic Analysis","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration by Parts Formula on Solutions to Stochastic Differential Equations with Jumps on Riemannian Manifolds\",\"authors\":\"Hirotaka Kai, Atsushi Takeuchi\",\"doi\":\"10.31390/josa.2.3.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider solutions to Marcus-type stochastic differential equations with jumps on the bundle of orthonormal frames O(M) over a Riemannian manifold M , and define the M -valued process by its canonical projection, which is parallel to the Eells-Elworthy-Malliavin construction of Brownian motions on M . In the present paper, the integration by parts formula for such jump processes is studied, and the strategy is based upon the calculus on Brownian motions via the Kolmogorov backward equations. The celebrated Bismut formula can be also obtained in our setting.\",\"PeriodicalId\":263604,\"journal\":{\"name\":\"Journal of Stochastic Analysis\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Stochastic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31390/josa.2.3.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31390/josa.2.3.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑riemann流形M上具有跳跃的marcus型随机微分方程的解,并通过其正则投影定义M值过程,该过程平行于M上布朗运动的Eells-Elworthy-Malliavin构造。本文研究了这类跳跃过程的分部积分公式,并采用基于Kolmogorov倒向方程的布朗运动微积分的策略。著名的铋公式也可以在我们的环境中得到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration by Parts Formula on Solutions to Stochastic Differential Equations with Jumps on Riemannian Manifolds
Consider solutions to Marcus-type stochastic differential equations with jumps on the bundle of orthonormal frames O(M) over a Riemannian manifold M , and define the M -valued process by its canonical projection, which is parallel to the Eells-Elworthy-Malliavin construction of Brownian motions on M . In the present paper, the integration by parts formula for such jump processes is studied, and the strategy is based upon the calculus on Brownian motions via the Kolmogorov backward equations. The celebrated Bismut formula can be also obtained in our setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信