{"title":"建筑结构热应力分析的自适应有限元技术","authors":"P. Dechaumphai","doi":"10.1299/JSMEA1993.39.2_223","DOIUrl":null,"url":null,"abstract":"An adaptive finite element technique for thermal stress analysis of built-up structures has been developed. A finite element formulation for a triangular membrane element and a new plate bending element, used for modelling such structures under both mechanical and thermal loadings, is presented. The associated finite element matrices have been derived in closed form. The performance of the new plate bending element is evaluated for a plate with temperature gradient through its thickness by comparing the predicted solution with the exact solution. The effectiveness of the adaptive meshing technique combined with the finite element method is evaluated by thermal stress analysis of a built-up structure with intersecting panels. The application demonstrates that the adaptive meshing technique can provide an accurate solution with fewer elements and shorter computational time than the standard finite element procedure.","PeriodicalId":143127,"journal":{"name":"JSME international journal. Series A, mechanics and material engineering","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Adaptive Finite Element Technique for Thermal Stress Analysis of Built-Up Structures\",\"authors\":\"P. Dechaumphai\",\"doi\":\"10.1299/JSMEA1993.39.2_223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An adaptive finite element technique for thermal stress analysis of built-up structures has been developed. A finite element formulation for a triangular membrane element and a new plate bending element, used for modelling such structures under both mechanical and thermal loadings, is presented. The associated finite element matrices have been derived in closed form. The performance of the new plate bending element is evaluated for a plate with temperature gradient through its thickness by comparing the predicted solution with the exact solution. The effectiveness of the adaptive meshing technique combined with the finite element method is evaluated by thermal stress analysis of a built-up structure with intersecting panels. The application demonstrates that the adaptive meshing technique can provide an accurate solution with fewer elements and shorter computational time than the standard finite element procedure.\",\"PeriodicalId\":143127,\"journal\":{\"name\":\"JSME international journal. Series A, mechanics and material engineering\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JSME international journal. Series A, mechanics and material engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1299/JSMEA1993.39.2_223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JSME international journal. Series A, mechanics and material engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JSMEA1993.39.2_223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Finite Element Technique for Thermal Stress Analysis of Built-Up Structures
An adaptive finite element technique for thermal stress analysis of built-up structures has been developed. A finite element formulation for a triangular membrane element and a new plate bending element, used for modelling such structures under both mechanical and thermal loadings, is presented. The associated finite element matrices have been derived in closed form. The performance of the new plate bending element is evaluated for a plate with temperature gradient through its thickness by comparing the predicted solution with the exact solution. The effectiveness of the adaptive meshing technique combined with the finite element method is evaluated by thermal stress analysis of a built-up structure with intersecting panels. The application demonstrates that the adaptive meshing technique can provide an accurate solution with fewer elements and shorter computational time than the standard finite element procedure.