基于递归神经网络的Coq组件连接件性能验证预测策略

Xiyue Zhang, Yi Li, Weijiang Hong, Mengyong Sun
{"title":"基于递归神经网络的Coq组件连接件性能验证预测策略","authors":"Xiyue Zhang, Yi Li, Weijiang Hong, Mengyong Sun","doi":"10.1109/TASE.2019.00-12","DOIUrl":null,"url":null,"abstract":"Formal modeling and verification of component connectors in complex software systems are getting more interests with recent advancements and evolution in modern software techniques. Various properties of connectors can be specified as high-order logic propositions and verified using theorem proving techniques. However, most high-order logic provers still highly rely on human interactions and thus make the proving process difficult and time-consuming. In this paper, we propose an approach based on recurrent neural networks (RNNs) to predict the correct tactics in the proving process. Recurrent layers consisting of Long-Short-Term-Memory (LSTM) units provide a better correctness rate comparing with simple RNN units. Under this framework, properties of connectors can be naturally formalized and semi-automatically proved in Coq.","PeriodicalId":183749,"journal":{"name":"2019 International Symposium on Theoretical Aspects of Software Engineering (TASE)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Using Recurrent Neural Network to Predict Tactics for Proving Component Connector Properties in Coq\",\"authors\":\"Xiyue Zhang, Yi Li, Weijiang Hong, Mengyong Sun\",\"doi\":\"10.1109/TASE.2019.00-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Formal modeling and verification of component connectors in complex software systems are getting more interests with recent advancements and evolution in modern software techniques. Various properties of connectors can be specified as high-order logic propositions and verified using theorem proving techniques. However, most high-order logic provers still highly rely on human interactions and thus make the proving process difficult and time-consuming. In this paper, we propose an approach based on recurrent neural networks (RNNs) to predict the correct tactics in the proving process. Recurrent layers consisting of Long-Short-Term-Memory (LSTM) units provide a better correctness rate comparing with simple RNN units. Under this framework, properties of connectors can be naturally formalized and semi-automatically proved in Coq.\",\"PeriodicalId\":183749,\"journal\":{\"name\":\"2019 International Symposium on Theoretical Aspects of Software Engineering (TASE)\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Symposium on Theoretical Aspects of Software Engineering (TASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TASE.2019.00-12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Symposium on Theoretical Aspects of Software Engineering (TASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TASE.2019.00-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着现代软件技术的进步和发展,复杂软件系统中组件连接器的形式化建模和验证受到越来越多的关注。连接器的各种性质可以指定为高阶逻辑命题,并使用定理证明技术进行验证。然而,大多数高阶逻辑证明仍然高度依赖于人的交互,从而使证明过程变得困难和耗时。在本文中,我们提出了一种基于递归神经网络(RNNs)的方法来预测证明过程中的正确策略。与简单的RNN单元相比,由长短期记忆(LSTM)单元组成的循环层提供了更好的正确率。在这个框架下,连接器的属性可以在Coq中自然形式化和半自动证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Recurrent Neural Network to Predict Tactics for Proving Component Connector Properties in Coq
Formal modeling and verification of component connectors in complex software systems are getting more interests with recent advancements and evolution in modern software techniques. Various properties of connectors can be specified as high-order logic propositions and verified using theorem proving techniques. However, most high-order logic provers still highly rely on human interactions and thus make the proving process difficult and time-consuming. In this paper, we propose an approach based on recurrent neural networks (RNNs) to predict the correct tactics in the proving process. Recurrent layers consisting of Long-Short-Term-Memory (LSTM) units provide a better correctness rate comparing with simple RNN units. Under this framework, properties of connectors can be naturally formalized and semi-automatically proved in Coq.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信