Sofic的动态变化

Ali Akbar Kamaludheen
{"title":"Sofic的动态变化","authors":"Ali Akbar Kamaludheen","doi":"10.17993/3ctecno.2022.v11n2e42.13-23","DOIUrl":null,"url":null,"abstract":"In this paper, we provide a characterization for the subshifts of finite type (SFT) in terms of Cellular automata (CA). In addition, we prove that 1. The following are equivalent for a non-singleton subshift of finite type XF. a) XF is transitive and Per(XF), the set of periodic points of XF, is cofinite b) XF is weak mixing c) XF is mixing. 2. For non-singleton sofic shifts, only the statements (a) and (b) are equivalent.","PeriodicalId":210685,"journal":{"name":"3C Tecnología_Glosas de innovación aplicadas a la pyme","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamics of Sofic Shifts\",\"authors\":\"Ali Akbar Kamaludheen\",\"doi\":\"10.17993/3ctecno.2022.v11n2e42.13-23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we provide a characterization for the subshifts of finite type (SFT) in terms of Cellular automata (CA). In addition, we prove that 1. The following are equivalent for a non-singleton subshift of finite type XF. a) XF is transitive and Per(XF), the set of periodic points of XF, is cofinite b) XF is weak mixing c) XF is mixing. 2. For non-singleton sofic shifts, only the statements (a) and (b) are equivalent.\",\"PeriodicalId\":210685,\"journal\":{\"name\":\"3C Tecnología_Glosas de innovación aplicadas a la pyme\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3C Tecnología_Glosas de innovación aplicadas a la pyme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17993/3ctecno.2022.v11n2e42.13-23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3C Tecnología_Glosas de innovación aplicadas a la pyme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17993/3ctecno.2022.v11n2e42.13-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文利用元胞自动机(CA)给出了有限型(SFT)子位移的一个表征。另外,我们证明了1。以下是有限类型XF的非单态子位移的等价表达式。a) XF是可传递的,而Per(XF), XF的周期点的集合,是有限的b) XF是弱混合c) XF是混合。2. 对于非单态转换,只有语句(a)和语句(b)是等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of Sofic Shifts
In this paper, we provide a characterization for the subshifts of finite type (SFT) in terms of Cellular automata (CA). In addition, we prove that 1. The following are equivalent for a non-singleton subshift of finite type XF. a) XF is transitive and Per(XF), the set of periodic points of XF, is cofinite b) XF is weak mixing c) XF is mixing. 2. For non-singleton sofic shifts, only the statements (a) and (b) are equivalent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信