估算事实挖掘的重要特征(以传记挖掘为例)

S. F. Adafre, M. de Rijke
{"title":"估算事实挖掘的重要特征(以传记挖掘为例)","authors":"S. F. Adafre, M. de Rijke","doi":"10.5555/1931390.1931464","DOIUrl":null,"url":null,"abstract":"We present a transparent model for ranking sentences that incorporates topic relevance as well as an aboutness and importance feature. We describe and compare five methods for estimating the importance feature. The two key features that we use are graph-based ranking and ranking based on reference corpora of sentences known to be important. Independently those features do not improve over the baseline, but combined they do. While our experimental evaluation focuses on informational queries about people, our importance estimation methods are completely general and can be applied to any topic.","PeriodicalId":120472,"journal":{"name":"RIAO Conference","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Estimating Importance Features for Fact Mining (With a Case Study in Biography Mining)\",\"authors\":\"S. F. Adafre, M. de Rijke\",\"doi\":\"10.5555/1931390.1931464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a transparent model for ranking sentences that incorporates topic relevance as well as an aboutness and importance feature. We describe and compare five methods for estimating the importance feature. The two key features that we use are graph-based ranking and ranking based on reference corpora of sentences known to be important. Independently those features do not improve over the baseline, but combined they do. While our experimental evaluation focuses on informational queries about people, our importance estimation methods are completely general and can be applied to any topic.\",\"PeriodicalId\":120472,\"journal\":{\"name\":\"RIAO Conference\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RIAO Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/1931390.1931464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RIAO Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/1931390.1931464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一个透明的句子排名模型,该模型结合了主题相关性以及相关性和重要性特征。我们描述并比较了估计重要性特征的五种方法。我们使用的两个关键特征是基于图的排名和基于参考语料库的排名,这些语料库是已知的重要句子。单独来看,这些特性在基线上并没有提高,但是结合起来就提高了。虽然我们的实验评估侧重于关于人的信息查询,但我们的重要性估计方法是完全通用的,可以应用于任何主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Importance Features for Fact Mining (With a Case Study in Biography Mining)
We present a transparent model for ranking sentences that incorporates topic relevance as well as an aboutness and importance feature. We describe and compare five methods for estimating the importance feature. The two key features that we use are graph-based ranking and ranking based on reference corpora of sentences known to be important. Independently those features do not improve over the baseline, but combined they do. While our experimental evaluation focuses on informational queries about people, our importance estimation methods are completely general and can be applied to any topic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信