物联网无人机网络中基于深度迁移学习的航空图像分类模型蚯蚓优化

Dr.R.PANDI Selvam
{"title":"物联网无人机网络中基于深度迁移学习的航空图像分类模型蚯蚓优化","authors":"Dr.R.PANDI Selvam","doi":"10.54216/fpa.070104","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicles (UAVs) can be placed effectively in offering high-quality services for Internet of Things (IoT) networks. It finds use in several applications such as smart city, smart healthcare, surveillance, environment monitoring, disaster management, etc. Classification of images captured by UAV networks, i.e., aerial image classification is a challenging task and can be solved by the design of artificial intelligence (AI) techniques. Therefore, this article presents an Earthworm Optimization with Deep Transfer Learning Enabled Aerial Image Classification (EWODTL-AIC) model in IoT enabled UAV networks. The major intention of the EWODTL-AIC technique is to effectually categorize different classes of aerial images captured by UAVs. The EWODTL-AIC technique initially employs AlexNet model as feature extractor for producing optimal feature vectors. Followed by, the hyperparameter values of the AlexNet model are decided by the utilization of earthworm optimization (EWO) algorithm. At last, the extreme gradient boosting (XGBoost) model is employed for the classification of aerial images. The experimental validation of the EWODTL-AIC model is performed using benchmark dataset. The extensive comparative analysis reported the better outcomes of the EWODTL-AIC technique over the other existing techniques.","PeriodicalId":269527,"journal":{"name":"Fusion: Practice and Applications","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Earthworm Optimization with Deep Transfer Learning Enabled Aerial Image Classification Model in IoT Enabled UAV Networks\",\"authors\":\"Dr.R.PANDI Selvam\",\"doi\":\"10.54216/fpa.070104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned aerial vehicles (UAVs) can be placed effectively in offering high-quality services for Internet of Things (IoT) networks. It finds use in several applications such as smart city, smart healthcare, surveillance, environment monitoring, disaster management, etc. Classification of images captured by UAV networks, i.e., aerial image classification is a challenging task and can be solved by the design of artificial intelligence (AI) techniques. Therefore, this article presents an Earthworm Optimization with Deep Transfer Learning Enabled Aerial Image Classification (EWODTL-AIC) model in IoT enabled UAV networks. The major intention of the EWODTL-AIC technique is to effectually categorize different classes of aerial images captured by UAVs. The EWODTL-AIC technique initially employs AlexNet model as feature extractor for producing optimal feature vectors. Followed by, the hyperparameter values of the AlexNet model are decided by the utilization of earthworm optimization (EWO) algorithm. At last, the extreme gradient boosting (XGBoost) model is employed for the classification of aerial images. The experimental validation of the EWODTL-AIC model is performed using benchmark dataset. The extensive comparative analysis reported the better outcomes of the EWODTL-AIC technique over the other existing techniques.\",\"PeriodicalId\":269527,\"journal\":{\"name\":\"Fusion: Practice and Applications\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fusion: Practice and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/fpa.070104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion: Practice and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/fpa.070104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

无人机可以有效地为物联网(IoT)网络提供高质量的服务。它在智能城市、智能医疗、监控、环境监测、灾害管理等多个应用中都有应用。对无人机网络捕获的图像进行分类,即航空图像分类是一项具有挑战性的任务,可以通过人工智能技术的设计来解决。因此,本文在物联网无人机网络中提出了一种基于深度迁移学习的蚯蚓优化航空图像分类(EWODTL-AIC)模型。EWODTL-AIC技术的主要目的是有效地对无人机捕获的不同类别的航空图像进行分类。EWODTL-AIC技术最初采用AlexNet模型作为特征提取器来产生最优特征向量。其次,利用蚯蚓优化(earthworm optimization, EWO)算法确定AlexNet模型的超参数值。最后,利用极限梯度增强(XGBoost)模型对航拍图像进行分类。利用基准数据集对EWODTL-AIC模型进行了实验验证。广泛的比较分析报告了EWODTL-AIC技术优于其他现有技术的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Earthworm Optimization with Deep Transfer Learning Enabled Aerial Image Classification Model in IoT Enabled UAV Networks
Unmanned aerial vehicles (UAVs) can be placed effectively in offering high-quality services for Internet of Things (IoT) networks. It finds use in several applications such as smart city, smart healthcare, surveillance, environment monitoring, disaster management, etc. Classification of images captured by UAV networks, i.e., aerial image classification is a challenging task and can be solved by the design of artificial intelligence (AI) techniques. Therefore, this article presents an Earthworm Optimization with Deep Transfer Learning Enabled Aerial Image Classification (EWODTL-AIC) model in IoT enabled UAV networks. The major intention of the EWODTL-AIC technique is to effectually categorize different classes of aerial images captured by UAVs. The EWODTL-AIC technique initially employs AlexNet model as feature extractor for producing optimal feature vectors. Followed by, the hyperparameter values of the AlexNet model are decided by the utilization of earthworm optimization (EWO) algorithm. At last, the extreme gradient boosting (XGBoost) model is employed for the classification of aerial images. The experimental validation of the EWODTL-AIC model is performed using benchmark dataset. The extensive comparative analysis reported the better outcomes of the EWODTL-AIC technique over the other existing techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信