一种利用特权信息预测心血管事件的分类器

G. Giannoulis, S. Yotov, M. Naghavi, M. Budoff, I. Kakadiaris
{"title":"一种利用特权信息预测心血管事件的分类器","authors":"G. Giannoulis, S. Yotov, M. Naghavi, M. Budoff, I. Kakadiaris","doi":"10.1145/2674396.2674434","DOIUrl":null,"url":null,"abstract":"Learning Using Privileged Information (LUPI) is a learning paradigm that aims to improve supervised learning in the presence of additional (privileged) information available during training, but not during the testing phase. For example, the Multi-Ethnic Study of Atherosclerosis (MESA) used in epidemiological studies related to heart disease, contains data from 186 attributes, only eight of which are used in current risk prediction algorithms.","PeriodicalId":192421,"journal":{"name":"Proceedings of the 7th International Conference on PErvasive Technologies Related to Assistive Environments","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards a classifier for predicting cardiovascular events using privileged information\",\"authors\":\"G. Giannoulis, S. Yotov, M. Naghavi, M. Budoff, I. Kakadiaris\",\"doi\":\"10.1145/2674396.2674434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning Using Privileged Information (LUPI) is a learning paradigm that aims to improve supervised learning in the presence of additional (privileged) information available during training, but not during the testing phase. For example, the Multi-Ethnic Study of Atherosclerosis (MESA) used in epidemiological studies related to heart disease, contains data from 186 attributes, only eight of which are used in current risk prediction algorithms.\",\"PeriodicalId\":192421,\"journal\":{\"name\":\"Proceedings of the 7th International Conference on PErvasive Technologies Related to Assistive Environments\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Conference on PErvasive Technologies Related to Assistive Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2674396.2674434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on PErvasive Technologies Related to Assistive Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2674396.2674434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用特权信息学习(LUPI)是一种学习范例,旨在在训练期间(但不是在测试阶段)存在额外(特权)信息的情况下改进监督学习。例如,用于与心脏病相关的流行病学研究的动脉粥样硬化多种族研究(MESA)包含来自186个属性的数据,其中只有8个用于当前的风险预测算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards a classifier for predicting cardiovascular events using privileged information
Learning Using Privileged Information (LUPI) is a learning paradigm that aims to improve supervised learning in the presence of additional (privileged) information available during training, but not during the testing phase. For example, the Multi-Ethnic Study of Atherosclerosis (MESA) used in epidemiological studies related to heart disease, contains data from 186 attributes, only eight of which are used in current risk prediction algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信