基于凸优化的超大规模阵列宽带传感器位置选择

Y. Lai, R. Balan, Heiko Claussen, J. Rosca
{"title":"基于凸优化的超大规模阵列宽带传感器位置选择","authors":"Y. Lai, R. Balan, Heiko Claussen, J. Rosca","doi":"10.1109/WASPAA.2013.6701889","DOIUrl":null,"url":null,"abstract":"Consider a sensing system using a large number of N microphones placed in multiple dimensions to monitor a broadband acoustic field. Using all the microphones at once is impractical because of the amount of data generated. Instead, we choose a subset of D microphones to be active. Specifically, we wish to find the set of D microphones that minimizes the largest interference gain at multiple frequencies while monitoring a target of interest. A direct, combinatorial approach - testing all N choose D subsets of microphones - is impractical because of the problem size. Instead, we use a convex optimization technique that induces sparsity through a l1-penalty to determine which subset of microphones to use. We test the robustness of the our solution through simulated annealing and compare its performance against a classical beamformer which maximizes SNR. Since switching from a subset of D microphones to another subset of D microphones at every sample is possible, we construct a space-time-frequency sampling scheme that achieves near optimal performance.","PeriodicalId":341888,"journal":{"name":"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Broadband sensor location selection using convex optimization in very large scale arrays\",\"authors\":\"Y. Lai, R. Balan, Heiko Claussen, J. Rosca\",\"doi\":\"10.1109/WASPAA.2013.6701889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a sensing system using a large number of N microphones placed in multiple dimensions to monitor a broadband acoustic field. Using all the microphones at once is impractical because of the amount of data generated. Instead, we choose a subset of D microphones to be active. Specifically, we wish to find the set of D microphones that minimizes the largest interference gain at multiple frequencies while monitoring a target of interest. A direct, combinatorial approach - testing all N choose D subsets of microphones - is impractical because of the problem size. Instead, we use a convex optimization technique that induces sparsity through a l1-penalty to determine which subset of microphones to use. We test the robustness of the our solution through simulated annealing and compare its performance against a classical beamformer which maximizes SNR. Since switching from a subset of D microphones to another subset of D microphones at every sample is possible, we construct a space-time-frequency sampling scheme that achieves near optimal performance.\",\"PeriodicalId\":341888,\"journal\":{\"name\":\"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WASPAA.2013.6701889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WASPAA.2013.6701889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

考虑一个传感系统,在多个维度上放置大量N个麦克风来监测宽带声场。同时使用所有的麦克风是不切实际的,因为会产生大量的数据。相反,我们选择D麦克风的一个子集来激活。具体来说,我们希望找到一组D麦克风,在监测感兴趣的目标时,在多个频率下使最大干扰增益最小化。直接的组合方法——测试所有N个选择D个麦克风子集——由于问题的大小是不切实际的。相反,我们使用凸优化技术,该技术通过11惩罚来诱导稀疏性,以确定使用哪个麦克风子集。我们通过模拟退火测试了我们的解决方案的鲁棒性,并将其性能与最大化信噪比的经典波束形成器进行了比较。由于在每个采样点从D个麦克风子集切换到另一个D个麦克风子集是可能的,因此我们构建了一个实现接近最佳性能的空时频采样方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Broadband sensor location selection using convex optimization in very large scale arrays
Consider a sensing system using a large number of N microphones placed in multiple dimensions to monitor a broadband acoustic field. Using all the microphones at once is impractical because of the amount of data generated. Instead, we choose a subset of D microphones to be active. Specifically, we wish to find the set of D microphones that minimizes the largest interference gain at multiple frequencies while monitoring a target of interest. A direct, combinatorial approach - testing all N choose D subsets of microphones - is impractical because of the problem size. Instead, we use a convex optimization technique that induces sparsity through a l1-penalty to determine which subset of microphones to use. We test the robustness of the our solution through simulated annealing and compare its performance against a classical beamformer which maximizes SNR. Since switching from a subset of D microphones to another subset of D microphones at every sample is possible, we construct a space-time-frequency sampling scheme that achieves near optimal performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信