{"title":"基于遗传算法和人工神经网络的变量加权组合预测模型","authors":"Junfengs Li, Wenzhan Dai, Haipeng Pan","doi":"10.1109/ICNC.2007.808","DOIUrl":null,"url":null,"abstract":"In this paper, the variable weight combination forecasting approach which both uses genetic algorithm with global searching ability and uses neural network with nonlinear mapping ability is put forward. First, the weight coefficients are gained by means of adaptive genetic algorithm. Second, the neural network is trained by weight -obtained and the intending weighted values are predicted further. The method has character that whole weighted values is positive and the summation of weight values at same time equals to 1. At last, the variable weight combination forecasting model is built and applied into forecasting total consumption expenditure in Shanghai GDP . Simulation shows the effectiveness of the proposed approach.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Variable Weighted Combination Forecasting Model Based on Genetic Algorithm and Artificial Neural Network\",\"authors\":\"Junfengs Li, Wenzhan Dai, Haipeng Pan\",\"doi\":\"10.1109/ICNC.2007.808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the variable weight combination forecasting approach which both uses genetic algorithm with global searching ability and uses neural network with nonlinear mapping ability is put forward. First, the weight coefficients are gained by means of adaptive genetic algorithm. Second, the neural network is trained by weight -obtained and the intending weighted values are predicted further. The method has character that whole weighted values is positive and the summation of weight values at same time equals to 1. At last, the variable weight combination forecasting model is built and applied into forecasting total consumption expenditure in Shanghai GDP . Simulation shows the effectiveness of the proposed approach.\",\"PeriodicalId\":250881,\"journal\":{\"name\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"volume\":\"177 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2007.808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Variable Weighted Combination Forecasting Model Based on Genetic Algorithm and Artificial Neural Network
In this paper, the variable weight combination forecasting approach which both uses genetic algorithm with global searching ability and uses neural network with nonlinear mapping ability is put forward. First, the weight coefficients are gained by means of adaptive genetic algorithm. Second, the neural network is trained by weight -obtained and the intending weighted values are predicted further. The method has character that whole weighted values is positive and the summation of weight values at same time equals to 1. At last, the variable weight combination forecasting model is built and applied into forecasting total consumption expenditure in Shanghai GDP . Simulation shows the effectiveness of the proposed approach.