基于遗传算法和人工神经网络的变量加权组合预测模型

Junfengs Li, Wenzhan Dai, Haipeng Pan
{"title":"基于遗传算法和人工神经网络的变量加权组合预测模型","authors":"Junfengs Li, Wenzhan Dai, Haipeng Pan","doi":"10.1109/ICNC.2007.808","DOIUrl":null,"url":null,"abstract":"In this paper, the variable weight combination forecasting approach which both uses genetic algorithm with global searching ability and uses neural network with nonlinear mapping ability is put forward. First, the weight coefficients are gained by means of adaptive genetic algorithm. Second, the neural network is trained by weight -obtained and the intending weighted values are predicted further. The method has character that whole weighted values is positive and the summation of weight values at same time equals to 1. At last, the variable weight combination forecasting model is built and applied into forecasting total consumption expenditure in Shanghai GDP . Simulation shows the effectiveness of the proposed approach.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Variable Weighted Combination Forecasting Model Based on Genetic Algorithm and Artificial Neural Network\",\"authors\":\"Junfengs Li, Wenzhan Dai, Haipeng Pan\",\"doi\":\"10.1109/ICNC.2007.808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the variable weight combination forecasting approach which both uses genetic algorithm with global searching ability and uses neural network with nonlinear mapping ability is put forward. First, the weight coefficients are gained by means of adaptive genetic algorithm. Second, the neural network is trained by weight -obtained and the intending weighted values are predicted further. The method has character that whole weighted values is positive and the summation of weight values at same time equals to 1. At last, the variable weight combination forecasting model is built and applied into forecasting total consumption expenditure in Shanghai GDP . Simulation shows the effectiveness of the proposed approach.\",\"PeriodicalId\":250881,\"journal\":{\"name\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"volume\":\"177 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2007.808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了利用具有全局搜索能力的遗传算法和具有非线性映射能力的神经网络进行变权组合预测的方法。首先,采用自适应遗传算法获得权重系数;其次,对神经网络进行加权训练,并进一步预测拟合的加权值;该方法具有整体权重值为正,同时各权重值之和等于1的特点。最后,建立了变权组合预测模型,并将其应用于上海市GDP中消费支出总额的预测。仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variable Weighted Combination Forecasting Model Based on Genetic Algorithm and Artificial Neural Network
In this paper, the variable weight combination forecasting approach which both uses genetic algorithm with global searching ability and uses neural network with nonlinear mapping ability is put forward. First, the weight coefficients are gained by means of adaptive genetic algorithm. Second, the neural network is trained by weight -obtained and the intending weighted values are predicted further. The method has character that whole weighted values is positive and the summation of weight values at same time equals to 1. At last, the variable weight combination forecasting model is built and applied into forecasting total consumption expenditure in Shanghai GDP . Simulation shows the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信