提高FPGA时序闭合机器学习方法的分类精度

Que Yanghua, Nachiket Kapre, Harnhua Ng, K. Teo
{"title":"提高FPGA时序闭合机器学习方法的分类精度","authors":"Que Yanghua, Nachiket Kapre, Harnhua Ng, K. Teo","doi":"10.1109/FCCM.2016.28","DOIUrl":null,"url":null,"abstract":"We can use Cloud Computing and Machine Learning to help deliver timing closure of FPGA designs using InTime [2], [3]. This approach requires no modification to the input RTL and relies exclusively on manipulating the CAD tool parameters that drive the optimization heuristics. By running multiple combinations of the parameters in parallel, we learn from results and identify which parameters caused an improvement in the final results. By systematically building a classification model and training it with the results of the parallel CAD runs, we can build an accurate estimation flow for helping identify which parameters are more likely to improve the timing. In this paper, we consider strategies for improving the predictive accuracy of our classifier models to help guide the CAD run towards timing convergence. With ensemble learning we are able to increase average AUC score from 0.74 to 0.79, which could also translate into 2.7× savings in machine learning effort.","PeriodicalId":113498,"journal":{"name":"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Improving Classification Accuracy of a Machine Learning Approach for FPGA Timing Closure\",\"authors\":\"Que Yanghua, Nachiket Kapre, Harnhua Ng, K. Teo\",\"doi\":\"10.1109/FCCM.2016.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We can use Cloud Computing and Machine Learning to help deliver timing closure of FPGA designs using InTime [2], [3]. This approach requires no modification to the input RTL and relies exclusively on manipulating the CAD tool parameters that drive the optimization heuristics. By running multiple combinations of the parameters in parallel, we learn from results and identify which parameters caused an improvement in the final results. By systematically building a classification model and training it with the results of the parallel CAD runs, we can build an accurate estimation flow for helping identify which parameters are more likely to improve the timing. In this paper, we consider strategies for improving the predictive accuracy of our classifier models to help guide the CAD run towards timing convergence. With ensemble learning we are able to increase average AUC score from 0.74 to 0.79, which could also translate into 2.7× savings in machine learning effort.\",\"PeriodicalId\":113498,\"journal\":{\"name\":\"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCCM.2016.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2016.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

我们可以使用云计算和机器学习来帮助InTime提供FPGA设计的时序关闭[2],[3]。这种方法不需要修改输入RTL,并且完全依赖于操纵驱动优化启发式的CAD工具参数。通过并行运行多个参数组合,我们从结果中学习,并确定哪些参数导致了最终结果的改进。通过系统地建立一个分类模型,并使用并行CAD运行的结果对其进行训练,我们可以建立一个准确的估计流程,以帮助识别哪些参数更有可能改善时序。在本文中,我们考虑了提高分类器模型预测精度的策略,以帮助指导CAD朝着定时收敛的方向运行。通过集成学习,我们能够将平均AUC分数从0.74提高到0.79,这也可以转化为机器学习工作量的2.7倍节省。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Classification Accuracy of a Machine Learning Approach for FPGA Timing Closure
We can use Cloud Computing and Machine Learning to help deliver timing closure of FPGA designs using InTime [2], [3]. This approach requires no modification to the input RTL and relies exclusively on manipulating the CAD tool parameters that drive the optimization heuristics. By running multiple combinations of the parameters in parallel, we learn from results and identify which parameters caused an improvement in the final results. By systematically building a classification model and training it with the results of the parallel CAD runs, we can build an accurate estimation flow for helping identify which parameters are more likely to improve the timing. In this paper, we consider strategies for improving the predictive accuracy of our classifier models to help guide the CAD run towards timing convergence. With ensemble learning we are able to increase average AUC score from 0.74 to 0.79, which could also translate into 2.7× savings in machine learning effort.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信