模糊最小-最大神经网络用于卫星红外图像聚类

B. Goswami, G. Bhandari, S. Goswami
{"title":"模糊最小-最大神经网络用于卫星红外图像聚类","authors":"B. Goswami, G. Bhandari, S. Goswami","doi":"10.1109/EAIT.2012.6407913","DOIUrl":null,"url":null,"abstract":"The process of estimation of precipitation from satellite images begins with the detection and identification of convective clouds. Clustering of the satellite infrared images is required in order to estimate the cloud cover area. In this paper a neuro-fuzzy technique in the form of unsupervised fuzzy minmax clustering neural (FMMCN) network has been implemented for clustering satellite infrared image. Each cluster is in the form of an n-dimensional hyperbox defined by minimum and maximum points and a fuzzy membership function. FMMCN suits this application area because it is completely unsupervised and hence, unlabeled data can be used with it. Also the number of clusters is not required to be mentioned at the beginning as it is calculated dynamically.","PeriodicalId":194103,"journal":{"name":"2012 Third International Conference on Emerging Applications of Information Technology","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Fuzzy min-max neural network for satellite infrared image clustering\",\"authors\":\"B. Goswami, G. Bhandari, S. Goswami\",\"doi\":\"10.1109/EAIT.2012.6407913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The process of estimation of precipitation from satellite images begins with the detection and identification of convective clouds. Clustering of the satellite infrared images is required in order to estimate the cloud cover area. In this paper a neuro-fuzzy technique in the form of unsupervised fuzzy minmax clustering neural (FMMCN) network has been implemented for clustering satellite infrared image. Each cluster is in the form of an n-dimensional hyperbox defined by minimum and maximum points and a fuzzy membership function. FMMCN suits this application area because it is completely unsupervised and hence, unlabeled data can be used with it. Also the number of clusters is not required to be mentioned at the beginning as it is calculated dynamically.\",\"PeriodicalId\":194103,\"journal\":{\"name\":\"2012 Third International Conference on Emerging Applications of Information Technology\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Third International Conference on Emerging Applications of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EAIT.2012.6407913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third International Conference on Emerging Applications of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIT.2012.6407913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

从卫星图像估计降水的过程首先是对对流云的探测和识别。为了估计云覆盖面积,需要对卫星红外图像进行聚类。本文以无监督模糊最小最大聚类神经网络(FMMCN)的形式实现了一种神经模糊技术对卫星红外图像的聚类。每个聚类的形式是一个n维超盒,由最小点和最大值以及模糊隶属函数定义。FMMCN适合这个应用领域,因为它是完全无监督的,因此,未标记的数据可以与它一起使用。此外,不需要在开始时提到集群的数量,因为它是动态计算的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy min-max neural network for satellite infrared image clustering
The process of estimation of precipitation from satellite images begins with the detection and identification of convective clouds. Clustering of the satellite infrared images is required in order to estimate the cloud cover area. In this paper a neuro-fuzzy technique in the form of unsupervised fuzzy minmax clustering neural (FMMCN) network has been implemented for clustering satellite infrared image. Each cluster is in the form of an n-dimensional hyperbox defined by minimum and maximum points and a fuzzy membership function. FMMCN suits this application area because it is completely unsupervised and hence, unlabeled data can be used with it. Also the number of clusters is not required to be mentioned at the beginning as it is calculated dynamically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信