{"title":"高吞吐量GPU随机漫步与微调并发查询处理","authors":"Cheng Xu, Chao Li, Pengyu Wang, Xiaofeng Hou, Jing Wang, Shixuan Sun, Minyi Guo, Hanqing Wu, Dongbai Chen, Xiang-Yi Liu","doi":"10.1145/3572848.3577482","DOIUrl":null,"url":null,"abstract":"Random walk serves as a powerful tool in dealing with large-scale graphs, reducing data size while preserving structural information. Unfortunately, existing system frameworks all focus on the execution of a single walker task in serial. We propose CoWalker, a high-throughput GPU random walk framework tailored for concurrent random walk tasks. It introduces a multi-level concurrent execution model to allow concurrent random walk tasks to efficiently share GPU resources with low overhead. Our system prototype confirms that the proposed system could outperform (up to 54%) the state-of-the-art in a wide spectral of scenarios.","PeriodicalId":233744,"journal":{"name":"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Throughput GPU Random Walk with Fine-Tuned Concurrent Query Processing\",\"authors\":\"Cheng Xu, Chao Li, Pengyu Wang, Xiaofeng Hou, Jing Wang, Shixuan Sun, Minyi Guo, Hanqing Wu, Dongbai Chen, Xiang-Yi Liu\",\"doi\":\"10.1145/3572848.3577482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Random walk serves as a powerful tool in dealing with large-scale graphs, reducing data size while preserving structural information. Unfortunately, existing system frameworks all focus on the execution of a single walker task in serial. We propose CoWalker, a high-throughput GPU random walk framework tailored for concurrent random walk tasks. It introduces a multi-level concurrent execution model to allow concurrent random walk tasks to efficiently share GPU resources with low overhead. Our system prototype confirms that the proposed system could outperform (up to 54%) the state-of-the-art in a wide spectral of scenarios.\",\"PeriodicalId\":233744,\"journal\":{\"name\":\"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3572848.3577482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3572848.3577482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-Throughput GPU Random Walk with Fine-Tuned Concurrent Query Processing
Random walk serves as a powerful tool in dealing with large-scale graphs, reducing data size while preserving structural information. Unfortunately, existing system frameworks all focus on the execution of a single walker task in serial. We propose CoWalker, a high-throughput GPU random walk framework tailored for concurrent random walk tasks. It introduces a multi-level concurrent execution model to allow concurrent random walk tasks to efficiently share GPU resources with low overhead. Our system prototype confirms that the proposed system could outperform (up to 54%) the state-of-the-art in a wide spectral of scenarios.