Rui Li, U. Alvarez-Rodriguez, L. Lamata, E. Solano
{"title":"近似量子加法器与遗传算法:IBM量子经验","authors":"Rui Li, U. Alvarez-Rodriguez, L. Lamata, E. Solano","doi":"10.1515/qmetro-2017-0001","DOIUrl":null,"url":null,"abstract":"Abstract It has been proven that quantum adders are forbidden by the laws of quantum mechanics. We analyze theoretical proposals for the implementation of approximate quantum adders and optimize them by means of genetic algorithms, improving previous protocols in terms of efficiency and fidelity. Furthermore, we experimentally realize a suitable approximate quantum adder with the cloud quantum computing facilities provided by IBM Quantum Experience. The development of approximate quantum adders enhances the toolbox of quantum information protocols, paving the way for novel applications in quantum technologies.","PeriodicalId":421179,"journal":{"name":"Quantum Measurements and Quantum Metrology","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Approximate Quantum Adders with Genetic Algorithms: An IBM Quantum Experience\",\"authors\":\"Rui Li, U. Alvarez-Rodriguez, L. Lamata, E. Solano\",\"doi\":\"10.1515/qmetro-2017-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract It has been proven that quantum adders are forbidden by the laws of quantum mechanics. We analyze theoretical proposals for the implementation of approximate quantum adders and optimize them by means of genetic algorithms, improving previous protocols in terms of efficiency and fidelity. Furthermore, we experimentally realize a suitable approximate quantum adder with the cloud quantum computing facilities provided by IBM Quantum Experience. The development of approximate quantum adders enhances the toolbox of quantum information protocols, paving the way for novel applications in quantum technologies.\",\"PeriodicalId\":421179,\"journal\":{\"name\":\"Quantum Measurements and Quantum Metrology\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Measurements and Quantum Metrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/qmetro-2017-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Measurements and Quantum Metrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/qmetro-2017-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Approximate Quantum Adders with Genetic Algorithms: An IBM Quantum Experience
Abstract It has been proven that quantum adders are forbidden by the laws of quantum mechanics. We analyze theoretical proposals for the implementation of approximate quantum adders and optimize them by means of genetic algorithms, improving previous protocols in terms of efficiency and fidelity. Furthermore, we experimentally realize a suitable approximate quantum adder with the cloud quantum computing facilities provided by IBM Quantum Experience. The development of approximate quantum adders enhances the toolbox of quantum information protocols, paving the way for novel applications in quantum technologies.