Christina L. Peterson, Amalee Wilson, P. Pirkelbauer, D. Dechev
{"title":"内存数据库并发控制的优化事务性数据结构方法","authors":"Christina L. Peterson, Amalee Wilson, P. Pirkelbauer, D. Dechev","doi":"10.1109/SBAC-PAD49847.2020.00025","DOIUrl":null,"url":null,"abstract":"The optimistic concurrency control (OCC) utilized by in-memory databases performs writes on thread-local copies and makes the writes visible upon passing validation. However, high contention workloads suffer from failure of the validation step due to non-semantic memory access conflicts, leading to frequent transaction aborts. In this work, we improve the commit rate of in-memory databases by replacing OCC and the underlying indexing of key-value entries in the Silo database with a lock-free transactional dictionary. To further optimize the transactional commit rate, we present transactional merging, a technique that relaxes the semantic conflict resolution of transactional data structures by merging conflicting operations to reduce aborts. Transactional merging guarantees strict serializability through a strategy that recovers the correct abstract state given that a transaction attempting to merge operations aborts. The experimental evaluation demonstrates that the lock-free transactional dictionary with transactional merging achieves an average speedup of 175% over OCC and the Masstree indexing used in the Silo database for write-dominated workloads on a non-uniform memory access system.","PeriodicalId":202581,"journal":{"name":"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimized Transactional Data Structure Approach to Concurrency Control for In-Memory Databases\",\"authors\":\"Christina L. Peterson, Amalee Wilson, P. Pirkelbauer, D. Dechev\",\"doi\":\"10.1109/SBAC-PAD49847.2020.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimistic concurrency control (OCC) utilized by in-memory databases performs writes on thread-local copies and makes the writes visible upon passing validation. However, high contention workloads suffer from failure of the validation step due to non-semantic memory access conflicts, leading to frequent transaction aborts. In this work, we improve the commit rate of in-memory databases by replacing OCC and the underlying indexing of key-value entries in the Silo database with a lock-free transactional dictionary. To further optimize the transactional commit rate, we present transactional merging, a technique that relaxes the semantic conflict resolution of transactional data structures by merging conflicting operations to reduce aborts. Transactional merging guarantees strict serializability through a strategy that recovers the correct abstract state given that a transaction attempting to merge operations aborts. The experimental evaluation demonstrates that the lock-free transactional dictionary with transactional merging achieves an average speedup of 175% over OCC and the Masstree indexing used in the Silo database for write-dominated workloads on a non-uniform memory access system.\",\"PeriodicalId\":202581,\"journal\":{\"name\":\"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBAC-PAD49847.2020.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PAD49847.2020.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimized Transactional Data Structure Approach to Concurrency Control for In-Memory Databases
The optimistic concurrency control (OCC) utilized by in-memory databases performs writes on thread-local copies and makes the writes visible upon passing validation. However, high contention workloads suffer from failure of the validation step due to non-semantic memory access conflicts, leading to frequent transaction aborts. In this work, we improve the commit rate of in-memory databases by replacing OCC and the underlying indexing of key-value entries in the Silo database with a lock-free transactional dictionary. To further optimize the transactional commit rate, we present transactional merging, a technique that relaxes the semantic conflict resolution of transactional data structures by merging conflicting operations to reduce aborts. Transactional merging guarantees strict serializability through a strategy that recovers the correct abstract state given that a transaction attempting to merge operations aborts. The experimental evaluation demonstrates that the lock-free transactional dictionary with transactional merging achieves an average speedup of 175% over OCC and the Masstree indexing used in the Silo database for write-dominated workloads on a non-uniform memory access system.