Song Yang, P. Wieder, M. Aziz, R. Yahyapour, Xiaoming Fu
{"title":"云存储的延迟敏感数据分配","authors":"Song Yang, P. Wieder, M. Aziz, R. Yahyapour, Xiaoming Fu","doi":"10.23919/INM.2017.7987258","DOIUrl":null,"url":null,"abstract":"Customers often suffer from the variability of data access time in cloud storage service, caused by network congestion, load dynamics, etc. One solution to guarantee a reliable latency-sensitive service is to issue requests with multiple download/upload sessions, accessing the required data (replicas) stored in one or more servers. In order to minimize storage costs, how to optimally allocate data in a minimum number of servers without violating latency guarantees remains to be a crucial issue for the cloud provider to tackle. In this paper, we study the latency-sensitive data allocation problem for cloud storage. We model the data access time as a given distribution whose Cumulative Density Function (CDF) is known, and prove that this problem is NP-hard. To solve it, we propose both exact Integer Nonlinear Program (INLP) and Tabu Search-based heuristic. The proposed algorithms are evaluated in terms of the number of used servers, storage utilization and throughput utilization.","PeriodicalId":119633,"journal":{"name":"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Latency-Sensitive Data Allocation for cloud storage\",\"authors\":\"Song Yang, P. Wieder, M. Aziz, R. Yahyapour, Xiaoming Fu\",\"doi\":\"10.23919/INM.2017.7987258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Customers often suffer from the variability of data access time in cloud storage service, caused by network congestion, load dynamics, etc. One solution to guarantee a reliable latency-sensitive service is to issue requests with multiple download/upload sessions, accessing the required data (replicas) stored in one or more servers. In order to minimize storage costs, how to optimally allocate data in a minimum number of servers without violating latency guarantees remains to be a crucial issue for the cloud provider to tackle. In this paper, we study the latency-sensitive data allocation problem for cloud storage. We model the data access time as a given distribution whose Cumulative Density Function (CDF) is known, and prove that this problem is NP-hard. To solve it, we propose both exact Integer Nonlinear Program (INLP) and Tabu Search-based heuristic. The proposed algorithms are evaluated in terms of the number of used servers, storage utilization and throughput utilization.\",\"PeriodicalId\":119633,\"journal\":{\"name\":\"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/INM.2017.7987258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/INM.2017.7987258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Latency-Sensitive Data Allocation for cloud storage
Customers often suffer from the variability of data access time in cloud storage service, caused by network congestion, load dynamics, etc. One solution to guarantee a reliable latency-sensitive service is to issue requests with multiple download/upload sessions, accessing the required data (replicas) stored in one or more servers. In order to minimize storage costs, how to optimally allocate data in a minimum number of servers without violating latency guarantees remains to be a crucial issue for the cloud provider to tackle. In this paper, we study the latency-sensitive data allocation problem for cloud storage. We model the data access time as a given distribution whose Cumulative Density Function (CDF) is known, and prove that this problem is NP-hard. To solve it, we propose both exact Integer Nonlinear Program (INLP) and Tabu Search-based heuristic. The proposed algorithms are evaluated in terms of the number of used servers, storage utilization and throughput utilization.