云存储的延迟敏感数据分配

Song Yang, P. Wieder, M. Aziz, R. Yahyapour, Xiaoming Fu
{"title":"云存储的延迟敏感数据分配","authors":"Song Yang, P. Wieder, M. Aziz, R. Yahyapour, Xiaoming Fu","doi":"10.23919/INM.2017.7987258","DOIUrl":null,"url":null,"abstract":"Customers often suffer from the variability of data access time in cloud storage service, caused by network congestion, load dynamics, etc. One solution to guarantee a reliable latency-sensitive service is to issue requests with multiple download/upload sessions, accessing the required data (replicas) stored in one or more servers. In order to minimize storage costs, how to optimally allocate data in a minimum number of servers without violating latency guarantees remains to be a crucial issue for the cloud provider to tackle. In this paper, we study the latency-sensitive data allocation problem for cloud storage. We model the data access time as a given distribution whose Cumulative Density Function (CDF) is known, and prove that this problem is NP-hard. To solve it, we propose both exact Integer Nonlinear Program (INLP) and Tabu Search-based heuristic. The proposed algorithms are evaluated in terms of the number of used servers, storage utilization and throughput utilization.","PeriodicalId":119633,"journal":{"name":"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Latency-Sensitive Data Allocation for cloud storage\",\"authors\":\"Song Yang, P. Wieder, M. Aziz, R. Yahyapour, Xiaoming Fu\",\"doi\":\"10.23919/INM.2017.7987258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Customers often suffer from the variability of data access time in cloud storage service, caused by network congestion, load dynamics, etc. One solution to guarantee a reliable latency-sensitive service is to issue requests with multiple download/upload sessions, accessing the required data (replicas) stored in one or more servers. In order to minimize storage costs, how to optimally allocate data in a minimum number of servers without violating latency guarantees remains to be a crucial issue for the cloud provider to tackle. In this paper, we study the latency-sensitive data allocation problem for cloud storage. We model the data access time as a given distribution whose Cumulative Density Function (CDF) is known, and prove that this problem is NP-hard. To solve it, we propose both exact Integer Nonlinear Program (INLP) and Tabu Search-based heuristic. The proposed algorithms are evaluated in terms of the number of used servers, storage utilization and throughput utilization.\",\"PeriodicalId\":119633,\"journal\":{\"name\":\"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/INM.2017.7987258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/INM.2017.7987258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在云存储服务中,由于网络拥塞、负载动态等原因,客户经常遭受数据访问时间的可变性。保证可靠的延迟敏感服务的一种解决方案是使用多个下载/上传会话发出请求,访问存储在一个或多个服务器中的所需数据(副本)。为了最大限度地降低存储成本,如何在不违反延迟保证的情况下在最少数量的服务器中优化分配数据仍然是云提供商需要解决的一个关键问题。本文研究了云存储的延迟敏感数据分配问题。我们将数据访问时间建模为已知累积密度函数(CDF)的给定分布,并证明该问题是np困难的。为了解决这个问题,我们提出了精确整数非线性规划(INLP)和基于禁忌搜索的启发式算法。根据使用的服务器数量、存储利用率和吞吐量利用率对所提出的算法进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Latency-Sensitive Data Allocation for cloud storage
Customers often suffer from the variability of data access time in cloud storage service, caused by network congestion, load dynamics, etc. One solution to guarantee a reliable latency-sensitive service is to issue requests with multiple download/upload sessions, accessing the required data (replicas) stored in one or more servers. In order to minimize storage costs, how to optimally allocate data in a minimum number of servers without violating latency guarantees remains to be a crucial issue for the cloud provider to tackle. In this paper, we study the latency-sensitive data allocation problem for cloud storage. We model the data access time as a given distribution whose Cumulative Density Function (CDF) is known, and prove that this problem is NP-hard. To solve it, we propose both exact Integer Nonlinear Program (INLP) and Tabu Search-based heuristic. The proposed algorithms are evaluated in terms of the number of used servers, storage utilization and throughput utilization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信