基于神经形态硬件的美国手语静态手势识别

Mohammadreza Mohammadi, Peyton S. Chandarana, J. Seekings, Sara Hendrix, Ramtin Zand
{"title":"基于神经形态硬件的美国手语静态手势识别","authors":"Mohammadreza Mohammadi, Peyton S. Chandarana, J. Seekings, Sara Hendrix, Ramtin Zand","doi":"10.1088/2634-4386/ac94f3","DOIUrl":null,"url":null,"abstract":"In this paper, we develop four spiking neural network (SNN) models for two static American sign language (ASL) hand gesture classification tasks, i.e., the ASL alphabet and ASL digits. The SNN models are deployed on Intel’s neuromorphic platform, Loihi, and then compared against equivalent deep neural network (DNN) models deployed on an edge computing device, the Intel neural compute stick 2 (NCS2). We perform a comprehensive comparison between the two systems in terms of accuracy, latency, power consumption, and energy. The best DNN model achieves an accuracy of 99.93% on the ASL alphabet dataset, whereas the best performing SNN model has an accuracy of 99.30%. For the ASL-digits dataset, the best DNN model achieves an accuracy of 99.76% accuracy while the SNN achieves 99.03%. Moreover, our obtained experimental results show that the Loihi neuromorphic hardware implementations achieve up to 20.64× and 4.10× reduction in power consumption and energy, respectively, when compared to NCS2.","PeriodicalId":198030,"journal":{"name":"Neuromorphic Computing and Engineering","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Static hand gesture recognition for American sign language using neuromorphic hardware\",\"authors\":\"Mohammadreza Mohammadi, Peyton S. Chandarana, J. Seekings, Sara Hendrix, Ramtin Zand\",\"doi\":\"10.1088/2634-4386/ac94f3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop four spiking neural network (SNN) models for two static American sign language (ASL) hand gesture classification tasks, i.e., the ASL alphabet and ASL digits. The SNN models are deployed on Intel’s neuromorphic platform, Loihi, and then compared against equivalent deep neural network (DNN) models deployed on an edge computing device, the Intel neural compute stick 2 (NCS2). We perform a comprehensive comparison between the two systems in terms of accuracy, latency, power consumption, and energy. The best DNN model achieves an accuracy of 99.93% on the ASL alphabet dataset, whereas the best performing SNN model has an accuracy of 99.30%. For the ASL-digits dataset, the best DNN model achieves an accuracy of 99.76% accuracy while the SNN achieves 99.03%. Moreover, our obtained experimental results show that the Loihi neuromorphic hardware implementations achieve up to 20.64× and 4.10× reduction in power consumption and energy, respectively, when compared to NCS2.\",\"PeriodicalId\":198030,\"journal\":{\"name\":\"Neuromorphic Computing and Engineering\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuromorphic Computing and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2634-4386/ac94f3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuromorphic Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2634-4386/ac94f3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文针对美国手语(ASL)的两个静态手势分类任务,即字母表和数字,建立了四种脉冲神经网络(SNN)模型。SNN模型部署在英特尔的神经形态平台Loihi上,然后与部署在边缘计算设备英特尔神经计算棒2 (NCS2)上的等效深度神经网络(DNN)模型进行比较。我们在准确性、延迟、功耗和能量方面对两种系统进行了全面的比较。最好的DNN模型在ASL字母数据集上的准确率为99.93%,而表现最好的SNN模型的准确率为99.30%。对于asl数字数据集,最佳DNN模型的准确率为99.76%,SNN模型的准确率为99.03%。此外,我们获得的实验结果表明,与NCS2相比,Loihi神经形态硬件实现的功耗和能量分别降低了20.64倍和4.10倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Static hand gesture recognition for American sign language using neuromorphic hardware
In this paper, we develop four spiking neural network (SNN) models for two static American sign language (ASL) hand gesture classification tasks, i.e., the ASL alphabet and ASL digits. The SNN models are deployed on Intel’s neuromorphic platform, Loihi, and then compared against equivalent deep neural network (DNN) models deployed on an edge computing device, the Intel neural compute stick 2 (NCS2). We perform a comprehensive comparison between the two systems in terms of accuracy, latency, power consumption, and energy. The best DNN model achieves an accuracy of 99.93% on the ASL alphabet dataset, whereas the best performing SNN model has an accuracy of 99.30%. For the ASL-digits dataset, the best DNN model achieves an accuracy of 99.76% accuracy while the SNN achieves 99.03%. Moreover, our obtained experimental results show that the Loihi neuromorphic hardware implementations achieve up to 20.64× and 4.10× reduction in power consumption and energy, respectively, when compared to NCS2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信