Jiaqi Zhu, Kaili Yao, B. Dai, V. Ralchenko, Shu Guoyang, Jiwen Zhao, Liu Kang, Lei Yang, A. Bolshakov, Jiecai Han
{"title":"氢微波等离子体在石墨上沉积金刚石","authors":"Jiaqi Zhu, Kaili Yao, B. Dai, V. Ralchenko, Shu Guoyang, Jiwen Zhao, Liu Kang, Lei Yang, A. Bolshakov, Jiecai Han","doi":"10.6000/2369-3355.2018.05.01.2","DOIUrl":null,"url":null,"abstract":"Hydrogen plasma etching of graphite generates radicals that can be used for diamond synthesis by chemical vapor deposition (CVD). We studied the etching of polycrystalline graphite by a hydrogen microwave plasma, growth of diamond particles of the non-seeded graphite substrates, and characterized the diamond morphology, grain size distribution, growth rate, and phase purity. The graphite substrates served simultaneously as a carbon source, this being the specific feature of the process. A disorder of the graphite surface structure reduces as the result of the etching as revealed with Raman spectroscopy. The diamond growth rate of 3 – 5 μm/h was achieved, the quality of the produced diamond grains improving with growth time due to inherently nonstationary graphite etching process. Received on 29-12-2017 Accepted on 05-03-2018 Published on 16-08-2018","PeriodicalId":403080,"journal":{"name":"Journal of Coating Science and Technology","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Diamond Deposition on Graphite in Hydrogen Microwave Plasma\",\"authors\":\"Jiaqi Zhu, Kaili Yao, B. Dai, V. Ralchenko, Shu Guoyang, Jiwen Zhao, Liu Kang, Lei Yang, A. Bolshakov, Jiecai Han\",\"doi\":\"10.6000/2369-3355.2018.05.01.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrogen plasma etching of graphite generates radicals that can be used for diamond synthesis by chemical vapor deposition (CVD). We studied the etching of polycrystalline graphite by a hydrogen microwave plasma, growth of diamond particles of the non-seeded graphite substrates, and characterized the diamond morphology, grain size distribution, growth rate, and phase purity. The graphite substrates served simultaneously as a carbon source, this being the specific feature of the process. A disorder of the graphite surface structure reduces as the result of the etching as revealed with Raman spectroscopy. The diamond growth rate of 3 – 5 μm/h was achieved, the quality of the produced diamond grains improving with growth time due to inherently nonstationary graphite etching process. Received on 29-12-2017 Accepted on 05-03-2018 Published on 16-08-2018\",\"PeriodicalId\":403080,\"journal\":{\"name\":\"Journal of Coating Science and Technology\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Coating Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6000/2369-3355.2018.05.01.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coating Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6000/2369-3355.2018.05.01.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Diamond Deposition on Graphite in Hydrogen Microwave Plasma
Hydrogen plasma etching of graphite generates radicals that can be used for diamond synthesis by chemical vapor deposition (CVD). We studied the etching of polycrystalline graphite by a hydrogen microwave plasma, growth of diamond particles of the non-seeded graphite substrates, and characterized the diamond morphology, grain size distribution, growth rate, and phase purity. The graphite substrates served simultaneously as a carbon source, this being the specific feature of the process. A disorder of the graphite surface structure reduces as the result of the etching as revealed with Raman spectroscopy. The diamond growth rate of 3 – 5 μm/h was achieved, the quality of the produced diamond grains improving with growth time due to inherently nonstationary graphite etching process. Received on 29-12-2017 Accepted on 05-03-2018 Published on 16-08-2018