Albert Zeyer, Parnia Bahar, Kazuki Irie, R. Schlüter, H. Ney
{"title":"ASR中变压器和LSTM编解码器模型的比较","authors":"Albert Zeyer, Parnia Bahar, Kazuki Irie, R. Schlüter, H. Ney","doi":"10.1109/ASRU46091.2019.9004025","DOIUrl":null,"url":null,"abstract":"We present competitive results using a Transformer encoder-decoder-attention model for end-to-end speech recognition needing less training time compared to a similarly performing LSTM model. We observe that the Transformer training is in general more stable compared to the LSTM, although it also seems to overfit more, and thus shows more problems with generalization. We also find that two initial LSTM layers in the Transformer encoder provide a much better positional encoding. Data-augmentation, a variant of SpecAugment, helps to improve both the Transformer by 33% and the LSTM by 15% relative. We analyze several pretraining and scheduling schemes, which is crucial for both the Transformer and the LSTM models. We improve our LSTM model by additional convolutional layers. We perform our experiments on Lib-riSpeech 1000h, Switchboard 300h and TED-LIUM-v2 200h, and we show state-of-the-art performance on TED-LIUM-v2 for attention based end-to-end models. We deliberately limit the training on LibriSpeech to 12.5 epochs of the training data for comparisons, to keep the results of practical interest, although we show that longer training time still improves more. We publish all the code and setups to run our experiments.","PeriodicalId":150913,"journal":{"name":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"142","resultStr":"{\"title\":\"A Comparison of Transformer and LSTM Encoder Decoder Models for ASR\",\"authors\":\"Albert Zeyer, Parnia Bahar, Kazuki Irie, R. Schlüter, H. Ney\",\"doi\":\"10.1109/ASRU46091.2019.9004025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present competitive results using a Transformer encoder-decoder-attention model for end-to-end speech recognition needing less training time compared to a similarly performing LSTM model. We observe that the Transformer training is in general more stable compared to the LSTM, although it also seems to overfit more, and thus shows more problems with generalization. We also find that two initial LSTM layers in the Transformer encoder provide a much better positional encoding. Data-augmentation, a variant of SpecAugment, helps to improve both the Transformer by 33% and the LSTM by 15% relative. We analyze several pretraining and scheduling schemes, which is crucial for both the Transformer and the LSTM models. We improve our LSTM model by additional convolutional layers. We perform our experiments on Lib-riSpeech 1000h, Switchboard 300h and TED-LIUM-v2 200h, and we show state-of-the-art performance on TED-LIUM-v2 for attention based end-to-end models. We deliberately limit the training on LibriSpeech to 12.5 epochs of the training data for comparisons, to keep the results of practical interest, although we show that longer training time still improves more. We publish all the code and setups to run our experiments.\",\"PeriodicalId\":150913,\"journal\":{\"name\":\"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"142\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU46091.2019.9004025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU46091.2019.9004025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Comparison of Transformer and LSTM Encoder Decoder Models for ASR
We present competitive results using a Transformer encoder-decoder-attention model for end-to-end speech recognition needing less training time compared to a similarly performing LSTM model. We observe that the Transformer training is in general more stable compared to the LSTM, although it also seems to overfit more, and thus shows more problems with generalization. We also find that two initial LSTM layers in the Transformer encoder provide a much better positional encoding. Data-augmentation, a variant of SpecAugment, helps to improve both the Transformer by 33% and the LSTM by 15% relative. We analyze several pretraining and scheduling schemes, which is crucial for both the Transformer and the LSTM models. We improve our LSTM model by additional convolutional layers. We perform our experiments on Lib-riSpeech 1000h, Switchboard 300h and TED-LIUM-v2 200h, and we show state-of-the-art performance on TED-LIUM-v2 for attention based end-to-end models. We deliberately limit the training on LibriSpeech to 12.5 epochs of the training data for comparisons, to keep the results of practical interest, although we show that longer training time still improves more. We publish all the code and setups to run our experiments.