Skluma:驯服杂乱数据存储库的统计学习管道

Paul Beckman, Tyler J. Skluzacek, K. Chard, Ian T Foster
{"title":"Skluma:驯服杂乱数据存储库的统计学习管道","authors":"Paul Beckman, Tyler J. Skluzacek, K. Chard, Ian T Foster","doi":"10.1145/3085504.3091116","DOIUrl":null,"url":null,"abstract":"Scientists' capacity to make use of existing data is predicated on their ability to find and understand those data. While significant progress has been made with respect to data publication, and indeed one can point to a number of well organized and highly utilized data repositories, there remain many such repositories in which archived data are poorly described and thus impossible to use. We present Skluma---an automated system designed to process vast amounts of data and extract deeply embedded metadata, latent topics, relationships between data, and contextual metadata derived from related documents. We show that Skluma can be used to organize and index a large climate data collection that totals more than 500GB of data in over a half-million files.","PeriodicalId":431308,"journal":{"name":"Proceedings of the 29th International Conference on Scientific and Statistical Database Management","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Skluma: A Statistical Learning Pipeline for Taming Unkempt Data Repositories\",\"authors\":\"Paul Beckman, Tyler J. Skluzacek, K. Chard, Ian T Foster\",\"doi\":\"10.1145/3085504.3091116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientists' capacity to make use of existing data is predicated on their ability to find and understand those data. While significant progress has been made with respect to data publication, and indeed one can point to a number of well organized and highly utilized data repositories, there remain many such repositories in which archived data are poorly described and thus impossible to use. We present Skluma---an automated system designed to process vast amounts of data and extract deeply embedded metadata, latent topics, relationships between data, and contextual metadata derived from related documents. We show that Skluma can be used to organize and index a large climate data collection that totals more than 500GB of data in over a half-million files.\",\"PeriodicalId\":431308,\"journal\":{\"name\":\"Proceedings of the 29th International Conference on Scientific and Statistical Database Management\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th International Conference on Scientific and Statistical Database Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3085504.3091116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3085504.3091116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

科学家利用现有数据的能力取决于他们发现和理解这些数据的能力。虽然在数据发布方面取得了重大进展,而且确实可以指出一些组织良好和利用率很高的数据存储库,但仍然有许多这样的存储库,其中的存档数据描述不佳,因此无法使用。我们介绍了Skluma——一个自动化系统,旨在处理大量数据并提取深度嵌入的元数据、潜在主题、数据之间的关系以及来自相关文档的上下文元数据。我们展示了Skluma可以用来组织和索引一个大型气候数据集,总计超过500GB的数据,超过50万个文件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Skluma: A Statistical Learning Pipeline for Taming Unkempt Data Repositories
Scientists' capacity to make use of existing data is predicated on their ability to find and understand those data. While significant progress has been made with respect to data publication, and indeed one can point to a number of well organized and highly utilized data repositories, there remain many such repositories in which archived data are poorly described and thus impossible to use. We present Skluma---an automated system designed to process vast amounts of data and extract deeply embedded metadata, latent topics, relationships between data, and contextual metadata derived from related documents. We show that Skluma can be used to organize and index a large climate data collection that totals more than 500GB of data in over a half-million files.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信