高素数功率模的Kloosterman路径分布

Djordje Mili'cevi'c, Sichen Zhang
{"title":"高素数功率模的Kloosterman路径分布","authors":"Djordje Mili'cevi'c, Sichen Zhang","doi":"10.1090/btran/98","DOIUrl":null,"url":null,"abstract":"We consider the distribution of polygonal paths joining the partial sums of normalized Kloosterman sums modulo an increasingly high power \n\n \n \n p\n n\n \n p^n\n \n\n of a fixed odd prime \n\n \n p\n p\n \n\n, a pure depth-aspect analogue of theorems of Kowalski–Sawin and Ricotta–Royer–Shparlinski. We find that this collection of Kloosterman paths naturally splits into finitely many disjoint ensembles, each of which converges in law as \n\n \n \n n\n →\n ∞\n \n n\\to \\infty\n \n\n to a distinct complex valued random continuous function. We further find that the random series resulting from gluing together these limits for every \n\n \n p\n p\n \n\n converges in law as \n\n \n \n p\n →\n ∞\n \n p\\to \\infty\n \n\n, and that paths joining partial Kloosterman sums acquire a different and universal limiting shape after a modest rearrangement of terms. As the key arithmetic input we prove, using the \n\n \n p\n p\n \n\n-adic method of stationary phase including highly singular cases, that complete sums of products of arbitrarily many Kloosterman sums to high prime power moduli exhibit either power savings or power alignment in shifts of arguments.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Distribution of Kloosterman paths to high prime power moduli\",\"authors\":\"Djordje Mili'cevi'c, Sichen Zhang\",\"doi\":\"10.1090/btran/98\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the distribution of polygonal paths joining the partial sums of normalized Kloosterman sums modulo an increasingly high power \\n\\n \\n \\n p\\n n\\n \\n p^n\\n \\n\\n of a fixed odd prime \\n\\n \\n p\\n p\\n \\n\\n, a pure depth-aspect analogue of theorems of Kowalski–Sawin and Ricotta–Royer–Shparlinski. We find that this collection of Kloosterman paths naturally splits into finitely many disjoint ensembles, each of which converges in law as \\n\\n \\n \\n n\\n →\\n ∞\\n \\n n\\\\to \\\\infty\\n \\n\\n to a distinct complex valued random continuous function. We further find that the random series resulting from gluing together these limits for every \\n\\n \\n p\\n p\\n \\n\\n converges in law as \\n\\n \\n \\n p\\n →\\n ∞\\n \\n p\\\\to \\\\infty\\n \\n\\n, and that paths joining partial Kloosterman sums acquire a different and universal limiting shape after a modest rearrangement of terms. As the key arithmetic input we prove, using the \\n\\n \\n p\\n p\\n \\n\\n-adic method of stationary phase including highly singular cases, that complete sums of products of arbitrarily many Kloosterman sums to high prime power moduli exhibit either power savings or power alignment in shifts of arguments.\",\"PeriodicalId\":377306,\"journal\":{\"name\":\"Transactions of the American Mathematical Society, Series B\",\"volume\":\"184 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/btran/98\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑了归一化Kloosterman和的部分和以一个越来越高的幂p n p^n模固定奇素数p p的多边形路径的分布,这是Kowalski-Sawin定理和Ricotta-Royer-Shparlinski定理的一个纯深度方面的类比。我们发现这个Kloosterman路径的集合自然地分裂成有限多个不相交的集合,每个集合在n→∞n \to\infty上收敛到一个不同的复值随机连续函数。我们进一步发现,将每个p p的这些极限粘合在一起所得到的随机级数规律地收敛为p→∞p \to\infty,并且加入部分Kloosterman和的路径在适度重排项后获得了不同的通用极限形状。作为关键的算法输入,我们使用包含高度奇异情况的p - p -进阶平稳相位方法证明了任意多个高素数功率模的Kloosterman和积的完全和在参数的移位中表现出功率节省或功率对齐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distribution of Kloosterman paths to high prime power moduli
We consider the distribution of polygonal paths joining the partial sums of normalized Kloosterman sums modulo an increasingly high power p n p^n of a fixed odd prime p p , a pure depth-aspect analogue of theorems of Kowalski–Sawin and Ricotta–Royer–Shparlinski. We find that this collection of Kloosterman paths naturally splits into finitely many disjoint ensembles, each of which converges in law as n → ∞ n\to \infty to a distinct complex valued random continuous function. We further find that the random series resulting from gluing together these limits for every p p converges in law as p → ∞ p\to \infty , and that paths joining partial Kloosterman sums acquire a different and universal limiting shape after a modest rearrangement of terms. As the key arithmetic input we prove, using the p p -adic method of stationary phase including highly singular cases, that complete sums of products of arbitrarily many Kloosterman sums to high prime power moduli exhibit either power savings or power alignment in shifts of arguments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信