自动谈判中预测代理策略

Chongming Hou
{"title":"自动谈判中预测代理策略","authors":"Chongming Hou","doi":"10.1109/IAT.2004.1342934","DOIUrl":null,"url":null,"abstract":"This work presents a learning mechanism that applies nonlinear regression analysis to predict a negotiation agent's behaviour based only the opponent's previous offers. The behaviour of negotiation agents in this study is determined by their tactics in the form of decision functions. Heuristics based on estimates of an agent's tactics are drawn from a series of experiments. The findings of this empirical study show that this approach can be used to obtain better deals than existing decision function tactics. The learning mechanism can be used online, without any prior knowledge about other agents and is therefore, very useful in open systems where agents have little or no information about each other.","PeriodicalId":281008,"journal":{"name":"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Predicting agents tactics in automated negotiation\",\"authors\":\"Chongming Hou\",\"doi\":\"10.1109/IAT.2004.1342934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a learning mechanism that applies nonlinear regression analysis to predict a negotiation agent's behaviour based only the opponent's previous offers. The behaviour of negotiation agents in this study is determined by their tactics in the form of decision functions. Heuristics based on estimates of an agent's tactics are drawn from a series of experiments. The findings of this empirical study show that this approach can be used to obtain better deals than existing decision function tactics. The learning mechanism can be used online, without any prior knowledge about other agents and is therefore, very useful in open systems where agents have little or no information about each other.\",\"PeriodicalId\":281008,\"journal\":{\"name\":\"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAT.2004.1342934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAT.2004.1342934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

这项工作提出了一种学习机制,该机制应用非线性回归分析来预测谈判代理仅基于对手先前的报价的行为。在本研究中,谈判代理人的行为以决策函数的形式由其策略决定。基于对代理策略估计的启发式算法是从一系列实验中得出的。实证研究结果表明,与现有的决策函数策略相比,该方法可以获得更好的交易。学习机制可以在线使用,不需要任何关于其他代理的先验知识,因此,在开放系统中非常有用,在开放系统中,代理之间很少或没有关于彼此的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting agents tactics in automated negotiation
This work presents a learning mechanism that applies nonlinear regression analysis to predict a negotiation agent's behaviour based only the opponent's previous offers. The behaviour of negotiation agents in this study is determined by their tactics in the form of decision functions. Heuristics based on estimates of an agent's tactics are drawn from a series of experiments. The findings of this empirical study show that this approach can be used to obtain better deals than existing decision function tactics. The learning mechanism can be used online, without any prior knowledge about other agents and is therefore, very useful in open systems where agents have little or no information about each other.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信