一种改进的LSTM方法提高业务流程预测的准确性

Mohammad Hasan Adalat, R. Azmi, J. Bagherinejad
{"title":"一种改进的LSTM方法提高业务流程预测的准确性","authors":"Mohammad Hasan Adalat, R. Azmi, J. Bagherinejad","doi":"10.29252/jimp.10.3.71","DOIUrl":null,"url":null,"abstract":"Abstract Prediction of the process behavior plays a key role in business process management. This research benefits from recent development in the field of deep learning to predict the next event in business processes. The proposed method uses Long Short-Term Memory (LSTM) as a promising architecture of recurrent neural networks. This architecture is implemented using a number of configurations with the aim of investigating how each of them affects the performance of the prediction models. In order to build and evaluate our prediction models, we used two publicly available datasets (BPI 2012 and BPI 2017). After developing 300 prediction models, the results indicated that the proposed method outperforms the state-of-the-art methods in terms of precision. The best result in terms of Accuracy (0.907) was achieved through “one-hidden” layer LSTM architecture and by using “Big” configuration in the absence of “feedback”.","PeriodicalId":303885,"journal":{"name":"Journal of Industrial Management Perspective","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Enhanced LSTM Method to Improve the Accuracy of the Business Process Prediction\",\"authors\":\"Mohammad Hasan Adalat, R. Azmi, J. Bagherinejad\",\"doi\":\"10.29252/jimp.10.3.71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Prediction of the process behavior plays a key role in business process management. This research benefits from recent development in the field of deep learning to predict the next event in business processes. The proposed method uses Long Short-Term Memory (LSTM) as a promising architecture of recurrent neural networks. This architecture is implemented using a number of configurations with the aim of investigating how each of them affects the performance of the prediction models. In order to build and evaluate our prediction models, we used two publicly available datasets (BPI 2012 and BPI 2017). After developing 300 prediction models, the results indicated that the proposed method outperforms the state-of-the-art methods in terms of precision. The best result in terms of Accuracy (0.907) was achieved through “one-hidden” layer LSTM architecture and by using “Big” configuration in the absence of “feedback”.\",\"PeriodicalId\":303885,\"journal\":{\"name\":\"Journal of Industrial Management Perspective\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Management Perspective\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29252/jimp.10.3.71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Management Perspective","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/jimp.10.3.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

流程行为预测在业务流程管理中起着关键作用。这项研究得益于深度学习领域的最新发展,以预测业务流程中的下一个事件。该方法将长短期记忆(LSTM)作为一种很有前途的递归神经网络结构。该体系结构使用许多配置来实现,目的是研究每种配置如何影响预测模型的性能。为了构建和评估我们的预测模型,我们使用了两个公开可用的数据集(BPI 2012和BPI 2017)。在建立了300个预测模型后,结果表明,所提出的方法在精度方面优于目前最先进的方法。准确度方面的最佳结果(0.907)是通过“一隐藏”层LSTM架构和在没有“反馈”的情况下使用“大”配置实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Enhanced LSTM Method to Improve the Accuracy of the Business Process Prediction
Abstract Prediction of the process behavior plays a key role in business process management. This research benefits from recent development in the field of deep learning to predict the next event in business processes. The proposed method uses Long Short-Term Memory (LSTM) as a promising architecture of recurrent neural networks. This architecture is implemented using a number of configurations with the aim of investigating how each of them affects the performance of the prediction models. In order to build and evaluate our prediction models, we used two publicly available datasets (BPI 2012 and BPI 2017). After developing 300 prediction models, the results indicated that the proposed method outperforms the state-of-the-art methods in terms of precision. The best result in terms of Accuracy (0.907) was achieved through “one-hidden” layer LSTM architecture and by using “Big” configuration in the absence of “feedback”.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信