研究电子病历大数据的数据修复步骤

Suraj Juddoo
{"title":"研究电子病历大数据的数据修复步骤","authors":"Suraj Juddoo","doi":"10.1109/NextComp55567.2022.9932167","DOIUrl":null,"url":null,"abstract":"This paper builds on previous research with the aim of optimizing data quality methodologies for Big Data systems, with a focus on Electronic Health Records. This optimization is performed for organisations aiming to follow a data-centric data quality strategy. One of the most important stages of a data quality lifecycle is involved with correcting dirty data detected. There is a lack of knowledge relative to the performance of existing data repair algorithms and tools in a Big Data context. This study performs a systemic review of data repair algorithms and tools, subsequently undertaking an experiment-based approach to evaluate those algorithms and tools while comparing it with a prototype built based on the results of a previous study. While some algorithms and tools could be seen to be marginally better than others, there was no algorithm or tool which was seen to be extremely adequate in the Big Data context. Thus, recommendations of improvements needed for data repair algorithms and tools for Big Data are given.","PeriodicalId":422085,"journal":{"name":"2022 3rd International Conference on Next Generation Computing Applications (NextComp)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating Data Repair steps for EHR Big Data\",\"authors\":\"Suraj Juddoo\",\"doi\":\"10.1109/NextComp55567.2022.9932167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper builds on previous research with the aim of optimizing data quality methodologies for Big Data systems, with a focus on Electronic Health Records. This optimization is performed for organisations aiming to follow a data-centric data quality strategy. One of the most important stages of a data quality lifecycle is involved with correcting dirty data detected. There is a lack of knowledge relative to the performance of existing data repair algorithms and tools in a Big Data context. This study performs a systemic review of data repair algorithms and tools, subsequently undertaking an experiment-based approach to evaluate those algorithms and tools while comparing it with a prototype built based on the results of a previous study. While some algorithms and tools could be seen to be marginally better than others, there was no algorithm or tool which was seen to be extremely adequate in the Big Data context. Thus, recommendations of improvements needed for data repair algorithms and tools for Big Data are given.\",\"PeriodicalId\":422085,\"journal\":{\"name\":\"2022 3rd International Conference on Next Generation Computing Applications (NextComp)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 3rd International Conference on Next Generation Computing Applications (NextComp)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NextComp55567.2022.9932167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd International Conference on Next Generation Computing Applications (NextComp)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NextComp55567.2022.9932167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文建立在先前的研究基础上,旨在优化大数据系统的数据质量方法,重点是电子健康记录。此优化适用于旨在遵循以数据为中心的数据质量策略的组织。数据质量生命周期中最重要的阶段之一是纠正检测到的脏数据。在大数据环境下,现有数据修复算法和工具的性能缺乏相关知识。本研究对数据修复算法和工具进行了系统的回顾,随后采用基于实验的方法来评估这些算法和工具,同时将其与基于先前研究结果构建的原型进行比较。虽然有些算法和工具可能比其他算法和工具略好,但在大数据环境中,没有一种算法或工具被认为是非常合适的。因此,给出了大数据数据修复算法和工具需要改进的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating Data Repair steps for EHR Big Data
This paper builds on previous research with the aim of optimizing data quality methodologies for Big Data systems, with a focus on Electronic Health Records. This optimization is performed for organisations aiming to follow a data-centric data quality strategy. One of the most important stages of a data quality lifecycle is involved with correcting dirty data detected. There is a lack of knowledge relative to the performance of existing data repair algorithms and tools in a Big Data context. This study performs a systemic review of data repair algorithms and tools, subsequently undertaking an experiment-based approach to evaluate those algorithms and tools while comparing it with a prototype built based on the results of a previous study. While some algorithms and tools could be seen to be marginally better than others, there was no algorithm or tool which was seen to be extremely adequate in the Big Data context. Thus, recommendations of improvements needed for data repair algorithms and tools for Big Data are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信