{"title":"侧通道泄漏感知指令调度","authors":"Hermann Seuschek, F. D. Santis, O. Guillen","doi":"10.1145/3031836.3031838","DOIUrl":null,"url":null,"abstract":"Speed-optimized side-channel protected software implementations of block ciphers are important for the security of embedded IoT devices based on general-purpose microcontrollers. The recent work of Schwabe et al. published at SAC 2016 introduced a bit-sliced implementation of AES and a first-order Boolean-masked version of it, targeting ARM Cortex-M CPU cores. The authors claim to be secure against timing as well as first-order power and electromagnetic side-channel attacks. However, the author's security claims are not taking the actual leakage characteristics of the underlying CPU architecture into account, hence making the scheme potentially vulnerable to first-order attacks in practice. In this work we show indeed that such a masking scheme can be attacked very easily by first-order electromagnetic side-channel attacks. In order to fix the issue and provide practical first-order security, we provide a strategy to schedule program instructions in way that the specific leakage of the CPU does not impair the side-channel countermeasure.","PeriodicalId":126518,"journal":{"name":"Proceedings of the Fourth Workshop on Cryptography and Security in Computing Systems","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Side-channel leakage aware instruction scheduling\",\"authors\":\"Hermann Seuschek, F. D. Santis, O. Guillen\",\"doi\":\"10.1145/3031836.3031838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speed-optimized side-channel protected software implementations of block ciphers are important for the security of embedded IoT devices based on general-purpose microcontrollers. The recent work of Schwabe et al. published at SAC 2016 introduced a bit-sliced implementation of AES and a first-order Boolean-masked version of it, targeting ARM Cortex-M CPU cores. The authors claim to be secure against timing as well as first-order power and electromagnetic side-channel attacks. However, the author's security claims are not taking the actual leakage characteristics of the underlying CPU architecture into account, hence making the scheme potentially vulnerable to first-order attacks in practice. In this work we show indeed that such a masking scheme can be attacked very easily by first-order electromagnetic side-channel attacks. In order to fix the issue and provide practical first-order security, we provide a strategy to schedule program instructions in way that the specific leakage of the CPU does not impair the side-channel countermeasure.\",\"PeriodicalId\":126518,\"journal\":{\"name\":\"Proceedings of the Fourth Workshop on Cryptography and Security in Computing Systems\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fourth Workshop on Cryptography and Security in Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3031836.3031838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth Workshop on Cryptography and Security in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3031836.3031838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Speed-optimized side-channel protected software implementations of block ciphers are important for the security of embedded IoT devices based on general-purpose microcontrollers. The recent work of Schwabe et al. published at SAC 2016 introduced a bit-sliced implementation of AES and a first-order Boolean-masked version of it, targeting ARM Cortex-M CPU cores. The authors claim to be secure against timing as well as first-order power and electromagnetic side-channel attacks. However, the author's security claims are not taking the actual leakage characteristics of the underlying CPU architecture into account, hence making the scheme potentially vulnerable to first-order attacks in practice. In this work we show indeed that such a masking scheme can be attacked very easily by first-order electromagnetic side-channel attacks. In order to fix the issue and provide practical first-order security, we provide a strategy to schedule program instructions in way that the specific leakage of the CPU does not impair the side-channel countermeasure.