利用发声声学分析评估帕金森病的进展

J. Mekyska, Z. Galaz, Zdenek Mzourek, Z. Smékal, I. Rektorová, I. Eliasova, M. Kostalova, M. Mrackova, D. Berankova, M. Faúndez-Zanuy, K. L. D. Ipiña, J. B. Alonso
{"title":"利用发声声学分析评估帕金森病的进展","authors":"J. Mekyska, Z. Galaz, Zdenek Mzourek, Z. Smékal, I. Rektorová, I. Eliasova, M. Kostalova, M. Mrackova, D. Berankova, M. Faúndez-Zanuy, K. L. D. Ipiña, J. B. Alonso","doi":"10.1109/IWOBI.2015.7160153","DOIUrl":null,"url":null,"abstract":"This paper deals with a complex acoustic analysis of phonation in patients with Parkinson's disease (PD) with a special focus on estimation of disease progress that is described by 7 different clinical scales (e. g. Unified Parkinson's disease rating scale or Beck depression inventory). The analysis is based on parametrization of 5 Czech vowels pronounced by 84 PD patients. Using classification and regression trees we estimated all clinical scores with maximal error lower or equal to 13 %. Best estimation was observed in the case of Mini-mental state examination (MAE = 0.77, estimation error 5.50 %). Finally, we proposed a binary classification based on random forests that is able to identify Parkinson's disease with sensitivity SEN = 92.86% (SPE = 85.71 %). The parametrization process was based on extraction of 107 speech features quantifying different clinical signs of hypokinetic dysarthria present in PD.","PeriodicalId":373170,"journal":{"name":"2015 4th International Work Conference on Bioinspired Intelligence (IWOBI)","volume":"259 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Assessing progress of Parkinson's disease using acoustic analysis of phonation\",\"authors\":\"J. Mekyska, Z. Galaz, Zdenek Mzourek, Z. Smékal, I. Rektorová, I. Eliasova, M. Kostalova, M. Mrackova, D. Berankova, M. Faúndez-Zanuy, K. L. D. Ipiña, J. B. Alonso\",\"doi\":\"10.1109/IWOBI.2015.7160153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with a complex acoustic analysis of phonation in patients with Parkinson's disease (PD) with a special focus on estimation of disease progress that is described by 7 different clinical scales (e. g. Unified Parkinson's disease rating scale or Beck depression inventory). The analysis is based on parametrization of 5 Czech vowels pronounced by 84 PD patients. Using classification and regression trees we estimated all clinical scores with maximal error lower or equal to 13 %. Best estimation was observed in the case of Mini-mental state examination (MAE = 0.77, estimation error 5.50 %). Finally, we proposed a binary classification based on random forests that is able to identify Parkinson's disease with sensitivity SEN = 92.86% (SPE = 85.71 %). The parametrization process was based on extraction of 107 speech features quantifying different clinical signs of hypokinetic dysarthria present in PD.\",\"PeriodicalId\":373170,\"journal\":{\"name\":\"2015 4th International Work Conference on Bioinspired Intelligence (IWOBI)\",\"volume\":\"259 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 4th International Work Conference on Bioinspired Intelligence (IWOBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWOBI.2015.7160153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 4th International Work Conference on Bioinspired Intelligence (IWOBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWOBI.2015.7160153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

本文对帕金森病(PD)患者的发音进行了复杂的声学分析,并特别关注了用7种不同的临床量表(如统一帕金森病评定量表或贝克抑郁量表)描述的疾病进展的估计。分析基于84例PD患者发音的5个捷克语元音的参数化。使用分类和回归树,我们估计所有最大误差低于或等于13%的临床评分。最小精神状态检查的估计效果最好(MAE = 0.77,估计误差5.50%)。最后,我们提出了一种基于随机森林的二分类方法,能够以SEN = 92.86% (SPE = 85.71%)的灵敏度识别帕金森病。参数化过程是基于提取107个语音特征,量化PD患者存在的低运动构音障碍的不同临床体征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing progress of Parkinson's disease using acoustic analysis of phonation
This paper deals with a complex acoustic analysis of phonation in patients with Parkinson's disease (PD) with a special focus on estimation of disease progress that is described by 7 different clinical scales (e. g. Unified Parkinson's disease rating scale or Beck depression inventory). The analysis is based on parametrization of 5 Czech vowels pronounced by 84 PD patients. Using classification and regression trees we estimated all clinical scores with maximal error lower or equal to 13 %. Best estimation was observed in the case of Mini-mental state examination (MAE = 0.77, estimation error 5.50 %). Finally, we proposed a binary classification based on random forests that is able to identify Parkinson's disease with sensitivity SEN = 92.86% (SPE = 85.71 %). The parametrization process was based on extraction of 107 speech features quantifying different clinical signs of hypokinetic dysarthria present in PD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信