用于概率推理的全光图形模型

P. Blanche, M. Glick, J. Wissinger, K. Kieu, Masoud Babaeian, H. Rastegarfar, V. Demir, M. Akbulut, P. Keiffer, R. Norwood, N. Peyghambarian, M. Neifeld
{"title":"用于概率推理的全光图形模型","authors":"P. Blanche, M. Glick, J. Wissinger, K. Kieu, Masoud Babaeian, H. Rastegarfar, V. Demir, M. Akbulut, P. Keiffer, R. Norwood, N. Peyghambarian, M. Neifeld","doi":"10.1109/PHOSST.2016.7548802","DOIUrl":null,"url":null,"abstract":"Considering that high performance electronic computation has become extremely efficient, for an optical hardware accelerator to be relevant, it must solve a type or a set of problems where its electronic counterpart is still struggling in term of size, energy, or time. We have identified one such challenge as the minimization of large scale Ising Hamiltonians when the number of particles is on the order of a million. Here we discuss an algorithmic approach based on probabilistic inference using graphical model and message passing.","PeriodicalId":337671,"journal":{"name":"2016 IEEE Photonics Society Summer Topical Meeting Series (SUM)","volume":"242 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"All-optical graphical models for probabilistic inference\",\"authors\":\"P. Blanche, M. Glick, J. Wissinger, K. Kieu, Masoud Babaeian, H. Rastegarfar, V. Demir, M. Akbulut, P. Keiffer, R. Norwood, N. Peyghambarian, M. Neifeld\",\"doi\":\"10.1109/PHOSST.2016.7548802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considering that high performance electronic computation has become extremely efficient, for an optical hardware accelerator to be relevant, it must solve a type or a set of problems where its electronic counterpart is still struggling in term of size, energy, or time. We have identified one such challenge as the minimization of large scale Ising Hamiltonians when the number of particles is on the order of a million. Here we discuss an algorithmic approach based on probabilistic inference using graphical model and message passing.\",\"PeriodicalId\":337671,\"journal\":{\"name\":\"2016 IEEE Photonics Society Summer Topical Meeting Series (SUM)\",\"volume\":\"242 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Photonics Society Summer Topical Meeting Series (SUM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PHOSST.2016.7548802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Photonics Society Summer Topical Meeting Series (SUM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHOSST.2016.7548802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

考虑到高性能电子计算已经变得非常高效,对于光学硬件加速器来说,它必须解决电子加速器在尺寸、能量或时间方面仍在努力解决的一类或一系列问题。我们已经确定了一个这样的挑战,即当粒子数量达到100万数量级时,如何最小化大规模的伊辛哈密顿量。本文讨论了一种基于概率推理的基于图形模型和消息传递的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
All-optical graphical models for probabilistic inference
Considering that high performance electronic computation has become extremely efficient, for an optical hardware accelerator to be relevant, it must solve a type or a set of problems where its electronic counterpart is still struggling in term of size, energy, or time. We have identified one such challenge as the minimization of large scale Ising Hamiltonians when the number of particles is on the order of a million. Here we discuss an algorithmic approach based on probabilistic inference using graphical model and message passing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信