视频对象语言基础

Alba Herrera-Palacio, Carles Ventura, Xavier Giró-i-Nieto
{"title":"视频对象语言基础","authors":"Alba Herrera-Palacio, Carles Ventura, Xavier Giró-i-Nieto","doi":"10.1145/3347450.3357662","DOIUrl":null,"url":null,"abstract":"The goal of this work is segmenting on a video sequence the objects which are mentioned in a linguistic description of the scene. We have adapted an existing deep neural network that achieves state of the art performance in semi-supervised video object segmentation, to add a linguistic branch that would generate an attention map over the video frames, making the segmentation of the objects temporally consistent along the sequence.","PeriodicalId":329495,"journal":{"name":"1st International Workshop on Multimodal Understanding and Learning for Embodied Applications","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Video Object Linguistic Grounding\",\"authors\":\"Alba Herrera-Palacio, Carles Ventura, Xavier Giró-i-Nieto\",\"doi\":\"10.1145/3347450.3357662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this work is segmenting on a video sequence the objects which are mentioned in a linguistic description of the scene. We have adapted an existing deep neural network that achieves state of the art performance in semi-supervised video object segmentation, to add a linguistic branch that would generate an attention map over the video frames, making the segmentation of the objects temporally consistent along the sequence.\",\"PeriodicalId\":329495,\"journal\":{\"name\":\"1st International Workshop on Multimodal Understanding and Learning for Embodied Applications\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1st International Workshop on Multimodal Understanding and Learning for Embodied Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3347450.3357662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st International Workshop on Multimodal Understanding and Learning for Embodied Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3347450.3357662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这项工作的目标是在视频序列中分割在场景的语言描述中提到的物体。我们改编了现有的深度神经网络,该网络在半监督视频对象分割中实现了最先进的性能,并添加了一个语言分支,该分支将在视频帧上生成注意力图,从而使对象的分割在时间上沿序列保持一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video Object Linguistic Grounding
The goal of this work is segmenting on a video sequence the objects which are mentioned in a linguistic description of the scene. We have adapted an existing deep neural network that achieves state of the art performance in semi-supervised video object segmentation, to add a linguistic branch that would generate an attention map over the video frames, making the segmentation of the objects temporally consistent along the sequence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信