Liting Hu, Hai Jin, Xiaofei Liao, Xianjie Xiong, Haikun Liu
{"title":"Magnet:一种用于虚拟机集群中降低功耗的新调度策略","authors":"Liting Hu, Hai Jin, Xiaofei Liao, Xianjie Xiong, Haikun Liu","doi":"10.1109/CLUSTR.2008.4663751","DOIUrl":null,"url":null,"abstract":"The concept of green computing has attracted much attention recently in cluster computing. However, previous local approaches focused on saving the energy cost of the components in a single workstation without a global vision on the whole cluster, so it achieved undesirable power reduction effect. Other cluster-wide energy saving techniques could only be applied to homogeneous workstations and specific applications. This paper describes the design and implementation of a novel approach that uses live migration of virtual machines to transfer load among the nodes on a multilayer ring-based overlay. This scheme can reduce the power consumption greatly by regarding all the cluster nodes as a whole. Plus, it can be applied to both the homogeneous and heterogeneous servers. Experimental measurements show that the new method can reduce the power consumption by 74.8% over base at most with certain adjustably acceptable overhead. The effectiveness and performance insights are also analytically verified.","PeriodicalId":198768,"journal":{"name":"2008 IEEE International Conference on Cluster Computing","volume":"152 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"84","resultStr":"{\"title\":\"Magnet: A novel scheduling policy for power reduction in cluster with virtual machines\",\"authors\":\"Liting Hu, Hai Jin, Xiaofei Liao, Xianjie Xiong, Haikun Liu\",\"doi\":\"10.1109/CLUSTR.2008.4663751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of green computing has attracted much attention recently in cluster computing. However, previous local approaches focused on saving the energy cost of the components in a single workstation without a global vision on the whole cluster, so it achieved undesirable power reduction effect. Other cluster-wide energy saving techniques could only be applied to homogeneous workstations and specific applications. This paper describes the design and implementation of a novel approach that uses live migration of virtual machines to transfer load among the nodes on a multilayer ring-based overlay. This scheme can reduce the power consumption greatly by regarding all the cluster nodes as a whole. Plus, it can be applied to both the homogeneous and heterogeneous servers. Experimental measurements show that the new method can reduce the power consumption by 74.8% over base at most with certain adjustably acceptable overhead. The effectiveness and performance insights are also analytically verified.\",\"PeriodicalId\":198768,\"journal\":{\"name\":\"2008 IEEE International Conference on Cluster Computing\",\"volume\":\"152 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"84\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLUSTR.2008.4663751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTR.2008.4663751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Magnet: A novel scheduling policy for power reduction in cluster with virtual machines
The concept of green computing has attracted much attention recently in cluster computing. However, previous local approaches focused on saving the energy cost of the components in a single workstation without a global vision on the whole cluster, so it achieved undesirable power reduction effect. Other cluster-wide energy saving techniques could only be applied to homogeneous workstations and specific applications. This paper describes the design and implementation of a novel approach that uses live migration of virtual machines to transfer load among the nodes on a multilayer ring-based overlay. This scheme can reduce the power consumption greatly by regarding all the cluster nodes as a whole. Plus, it can be applied to both the homogeneous and heterogeneous servers. Experimental measurements show that the new method can reduce the power consumption by 74.8% over base at most with certain adjustably acceptable overhead. The effectiveness and performance insights are also analytically verified.