最小分数RMSD的离群鲁棒ICP

J. M. Phillips, Ran Liu, Carlo Tomasi
{"title":"最小分数RMSD的离群鲁棒ICP","authors":"J. M. Phillips, Ran Liu, Carlo Tomasi","doi":"10.1109/3DIM.2007.39","DOIUrl":null,"url":null,"abstract":"We describe a variation of the iterative closest point (ICP) algorithm for aligning two point sets under a set of transformations. Our algorithm is superior to previous algorithms because (1) in determining the optimal alignment, it identifies and discards likely outliers in a statistically robust manner, and (2) it is guaranteed to converge to a locally optimal solution. To this end, we formalize a new distance measure, fractional root mean squared distance (FRMSD), which incorporates the fraction of inliers into the distance function. Our framework can easily incorporate most techniques and heuristics from modern registration algorithms. We experimentally validate our algorithm against previous techniques on 2 and 3 dimensional data exposed to a variety of outlier types.","PeriodicalId":442311,"journal":{"name":"Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"177","resultStr":"{\"title\":\"Outlier Robust ICP for Minimizing Fractional RMSD\",\"authors\":\"J. M. Phillips, Ran Liu, Carlo Tomasi\",\"doi\":\"10.1109/3DIM.2007.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a variation of the iterative closest point (ICP) algorithm for aligning two point sets under a set of transformations. Our algorithm is superior to previous algorithms because (1) in determining the optimal alignment, it identifies and discards likely outliers in a statistically robust manner, and (2) it is guaranteed to converge to a locally optimal solution. To this end, we formalize a new distance measure, fractional root mean squared distance (FRMSD), which incorporates the fraction of inliers into the distance function. Our framework can easily incorporate most techniques and heuristics from modern registration algorithms. We experimentally validate our algorithm against previous techniques on 2 and 3 dimensional data exposed to a variety of outlier types.\",\"PeriodicalId\":442311,\"journal\":{\"name\":\"Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"177\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DIM.2007.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DIM.2007.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 177

摘要

我们描述了一种迭代最近点(ICP)算法的变体,用于在一组变换下对齐两个点集。我们的算法优于以前的算法,因为(1)在确定最优对齐时,它以统计鲁棒的方式识别并丢弃可能的异常值,(2)它保证收敛到局部最优解。为此,我们形式化了一个新的距离度量,分数根均方距离(FRMSD),它将内层的分数纳入到距离函数中。我们的框架可以很容易地结合现代配准算法中的大多数技术和启发式方法。我们通过实验验证了我们的算法与之前的技术对暴露于各种异常类型的2和3维数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Outlier Robust ICP for Minimizing Fractional RMSD
We describe a variation of the iterative closest point (ICP) algorithm for aligning two point sets under a set of transformations. Our algorithm is superior to previous algorithms because (1) in determining the optimal alignment, it identifies and discards likely outliers in a statistically robust manner, and (2) it is guaranteed to converge to a locally optimal solution. To this end, we formalize a new distance measure, fractional root mean squared distance (FRMSD), which incorporates the fraction of inliers into the distance function. Our framework can easily incorporate most techniques and heuristics from modern registration algorithms. We experimentally validate our algorithm against previous techniques on 2 and 3 dimensional data exposed to a variety of outlier types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信