用电阻抗断层扫描技术和正性约束在体内估计头部组织电导率

Taweechai Ouypornkochagorn
{"title":"用电阻抗断层扫描技术和正性约束在体内估计头部组织电导率","authors":"Taweechai Ouypornkochagorn","doi":"10.1109/IEECON.2017.8075867","DOIUrl":null,"url":null,"abstract":"Reported head tissue conductivities to date are usually obtained from sample investigation in situ or in vitro. However, there are many issues to concern e.g. sample selection and preparation or the deterioration of physiological property over time. In vivo estimation is recently used to estimate based on certain techniques. Electrical impedance tomography (EIT) is a mentioned technique, however regarding the susceptibility to noise of EIT, the estimation often results unexpected outcome. The estimated conductivity values may be inaccurate and/or be negative. The number of tissues in the estimation is then usually not over two. In this work, positivity constraint was employed to restrain the estimate to be only positive. Simulation result shows that the employment of the constraint can improve estimation accuracy and robustness to noise and also modeling error. Simultaneous estimation for all five main tissues is possible as well, even though the estimation of the cerebrospinal fluid conductivity is still not accurate.","PeriodicalId":196081,"journal":{"name":"2017 International Electrical Engineering Congress (iEECON)","volume":"259 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vivo estimation of the head tissue conductivities by electrical impedance tomography technique and positivity constraint\",\"authors\":\"Taweechai Ouypornkochagorn\",\"doi\":\"10.1109/IEECON.2017.8075867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reported head tissue conductivities to date are usually obtained from sample investigation in situ or in vitro. However, there are many issues to concern e.g. sample selection and preparation or the deterioration of physiological property over time. In vivo estimation is recently used to estimate based on certain techniques. Electrical impedance tomography (EIT) is a mentioned technique, however regarding the susceptibility to noise of EIT, the estimation often results unexpected outcome. The estimated conductivity values may be inaccurate and/or be negative. The number of tissues in the estimation is then usually not over two. In this work, positivity constraint was employed to restrain the estimate to be only positive. Simulation result shows that the employment of the constraint can improve estimation accuracy and robustness to noise and also modeling error. Simultaneous estimation for all five main tissues is possible as well, even though the estimation of the cerebrospinal fluid conductivity is still not accurate.\",\"PeriodicalId\":196081,\"journal\":{\"name\":\"2017 International Electrical Engineering Congress (iEECON)\",\"volume\":\"259 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Electrical Engineering Congress (iEECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEECON.2017.8075867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Electrical Engineering Congress (iEECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEECON.2017.8075867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

迄今为止报道的头部组织电导率通常是通过原位或体外样本调查获得的。然而,有许多问题需要关注,例如样品的选择和制备或生理特性随时间的恶化。体内估计是近年来基于某些技术进行估计的一种方法。电阻抗层析成像(EIT)是一种被提及的技术,但由于电阻抗层析成像对噪声的敏感性,其估计往往会产生意想不到的结果。估计的电导率值可能不准确和/或为负值。估计中的组织数量通常不超过2个。在这项工作中,采用正约束来约束估计仅为正。仿真结果表明,该约束可以提高估计精度和对噪声的鲁棒性,降低建模误差。同时估计所有五种主要组织也是可能的,即使对脑脊液电导率的估计仍然不准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In vivo estimation of the head tissue conductivities by electrical impedance tomography technique and positivity constraint
Reported head tissue conductivities to date are usually obtained from sample investigation in situ or in vitro. However, there are many issues to concern e.g. sample selection and preparation or the deterioration of physiological property over time. In vivo estimation is recently used to estimate based on certain techniques. Electrical impedance tomography (EIT) is a mentioned technique, however regarding the susceptibility to noise of EIT, the estimation often results unexpected outcome. The estimated conductivity values may be inaccurate and/or be negative. The number of tissues in the estimation is then usually not over two. In this work, positivity constraint was employed to restrain the estimate to be only positive. Simulation result shows that the employment of the constraint can improve estimation accuracy and robustness to noise and also modeling error. Simultaneous estimation for all five main tissues is possible as well, even though the estimation of the cerebrospinal fluid conductivity is still not accurate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信