Xinyue Cui, Yuqiang Sun, Yao-bin Tian, Kun Xu, Shuwen Kou
{"title":"一种新型并联可重构移动机器人的机械设计与滚动运动分析","authors":"Xinyue Cui, Yuqiang Sun, Yao-bin Tian, Kun Xu, Shuwen Kou","doi":"10.1109/ICMA54519.2022.9856338","DOIUrl":null,"url":null,"abstract":"Recently, morphology methods were used to improve locomotion capability of a mobile robot by deforming the body into multiple topological structures for various locomotion modes. Rolling mode will provide a fast moving process for flat ground, while the legged mode is more suitable for rough terrain. In this work, a new reconfigurable robot with rolling and legged locomotion modes is proposed based on parallel mechanism method. Four reconfigurable limbs and two platforms are assembled into a parallel manipulator. Based on the reconfigurable properties of such parallel mechanism, the motion branches were planned to switch the robot into different topologies to generate rolling and legged locomotion. In addition, a motion planning method is presented to perform fast and stable rolling locomotion for this reconfigurable robot. A simulation is carried out and verified the design concept.","PeriodicalId":120073,"journal":{"name":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mechanical design and rolling locomotion analyses of a novel reconfigurable mobile robot constructed by a parallel mechanism\",\"authors\":\"Xinyue Cui, Yuqiang Sun, Yao-bin Tian, Kun Xu, Shuwen Kou\",\"doi\":\"10.1109/ICMA54519.2022.9856338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, morphology methods were used to improve locomotion capability of a mobile robot by deforming the body into multiple topological structures for various locomotion modes. Rolling mode will provide a fast moving process for flat ground, while the legged mode is more suitable for rough terrain. In this work, a new reconfigurable robot with rolling and legged locomotion modes is proposed based on parallel mechanism method. Four reconfigurable limbs and two platforms are assembled into a parallel manipulator. Based on the reconfigurable properties of such parallel mechanism, the motion branches were planned to switch the robot into different topologies to generate rolling and legged locomotion. In addition, a motion planning method is presented to perform fast and stable rolling locomotion for this reconfigurable robot. A simulation is carried out and verified the design concept.\",\"PeriodicalId\":120073,\"journal\":{\"name\":\"2022 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA54519.2022.9856338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA54519.2022.9856338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mechanical design and rolling locomotion analyses of a novel reconfigurable mobile robot constructed by a parallel mechanism
Recently, morphology methods were used to improve locomotion capability of a mobile robot by deforming the body into multiple topological structures for various locomotion modes. Rolling mode will provide a fast moving process for flat ground, while the legged mode is more suitable for rough terrain. In this work, a new reconfigurable robot with rolling and legged locomotion modes is proposed based on parallel mechanism method. Four reconfigurable limbs and two platforms are assembled into a parallel manipulator. Based on the reconfigurable properties of such parallel mechanism, the motion branches were planned to switch the robot into different topologies to generate rolling and legged locomotion. In addition, a motion planning method is presented to perform fast and stable rolling locomotion for this reconfigurable robot. A simulation is carried out and verified the design concept.