用于SDC硅跟踪器的双极模拟前端集成电路

I. Kipnis, H. Spieler, T. Collins
{"title":"用于SDC硅跟踪器的双极模拟前端集成电路","authors":"I. Kipnis, H. Spieler, T. Collins","doi":"10.1109/NSSMIC.1993.701772","DOIUrl":null,"url":null,"abstract":"A low-noise, low-power, high-bandwidth, radiation hard, silicon bipolar-transistor full-custom integrated circuit (IC) containing 64 channels of analog signal processing has been developed for the SDC silicon tracker. The IC was designed and tested at LBL and was fabricated using AT&T`s CBIC-U2, 4 GHz f{sub T} complementary bipolar technology. Each channel contains the following functions: low-noise preamplification, pulse shaping and threshold discrimination. This is the first iteration of the production analog IC for the SDC silicon tracker. The IC is laid out to directly match the 50 {mu}m pitch double-sided silicon strip detector. The chip measures 6.8 mm {times} 3.1 mm and contains 3,600 transistors. Three stages of amplification provide 180 mV/fC of gain with a 35 nsec peaking time at the comparator input. For a 14 pF detector capacitance, the equivalent noise charge is 1300 el. rms at a power consumption of 1 mW/channel from a single 3.5 V supply. With the discriminator threshold set to 4 times the noise level, a 16 nsec time-walk for 1.25 to 10fC signals is achieved using a time-walk compensation network. Irradiation tests at TRIUMF to a {Phi}=10{sup 14} protons/cm{sup 2} have been performed on the IC, demonstrating the radiation hardness of the complementarymore » bipolar process.« less","PeriodicalId":287813,"journal":{"name":"1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference","volume":"256 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Bipolar Analog Front-end Integrated Circuit For The SDC Silicon Tracker\",\"authors\":\"I. Kipnis, H. Spieler, T. Collins\",\"doi\":\"10.1109/NSSMIC.1993.701772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A low-noise, low-power, high-bandwidth, radiation hard, silicon bipolar-transistor full-custom integrated circuit (IC) containing 64 channels of analog signal processing has been developed for the SDC silicon tracker. The IC was designed and tested at LBL and was fabricated using AT&T`s CBIC-U2, 4 GHz f{sub T} complementary bipolar technology. Each channel contains the following functions: low-noise preamplification, pulse shaping and threshold discrimination. This is the first iteration of the production analog IC for the SDC silicon tracker. The IC is laid out to directly match the 50 {mu}m pitch double-sided silicon strip detector. The chip measures 6.8 mm {times} 3.1 mm and contains 3,600 transistors. Three stages of amplification provide 180 mV/fC of gain with a 35 nsec peaking time at the comparator input. For a 14 pF detector capacitance, the equivalent noise charge is 1300 el. rms at a power consumption of 1 mW/channel from a single 3.5 V supply. With the discriminator threshold set to 4 times the noise level, a 16 nsec time-walk for 1.25 to 10fC signals is achieved using a time-walk compensation network. Irradiation tests at TRIUMF to a {Phi}=10{sup 14} protons/cm{sup 2} have been performed on the IC, demonstrating the radiation hardness of the complementarymore » bipolar process.« less\",\"PeriodicalId\":287813,\"journal\":{\"name\":\"1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference\",\"volume\":\"256 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.1993.701772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.1993.701772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

研制了一种低噪声、低功耗、高带宽、抗辐射、含64通道模拟信号处理的硅双极晶体管全定制集成电路(IC)。该集成电路在LBL进行了设计和测试,并使用AT&T的CBIC-U2, 4 GHz互补双极技术制造。每个通道包含以下功能:低噪声预放大,脉冲整形和阈值判别。这是SDC硅跟踪器生产模拟IC的第一次迭代。该IC的布局直接匹配50 μ m节距的双面硅条探测器。该芯片尺寸为6.8 mm{乘以}3.1 mm,包含3600个晶体管。三级放大提供180 mV/fC的增益和35 nsec的峰值时间在比较器输入。对于14pf的检测器电容,等效噪声电荷为1300el。rms在单个3.5 V电源的功耗为1 mW/通道时。鉴别器阈值设置为噪声电平的4倍,使用时间行走补偿网络实现1.25至10fC信号的16 nsec时间行走。在TRIUMF对IC进行了a {Phi}=10{sup 14}质子/cm{sup 2}的辐照试验,证明了互补more»双极过程的辐射硬度。«少
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bipolar Analog Front-end Integrated Circuit For The SDC Silicon Tracker
A low-noise, low-power, high-bandwidth, radiation hard, silicon bipolar-transistor full-custom integrated circuit (IC) containing 64 channels of analog signal processing has been developed for the SDC silicon tracker. The IC was designed and tested at LBL and was fabricated using AT&T`s CBIC-U2, 4 GHz f{sub T} complementary bipolar technology. Each channel contains the following functions: low-noise preamplification, pulse shaping and threshold discrimination. This is the first iteration of the production analog IC for the SDC silicon tracker. The IC is laid out to directly match the 50 {mu}m pitch double-sided silicon strip detector. The chip measures 6.8 mm {times} 3.1 mm and contains 3,600 transistors. Three stages of amplification provide 180 mV/fC of gain with a 35 nsec peaking time at the comparator input. For a 14 pF detector capacitance, the equivalent noise charge is 1300 el. rms at a power consumption of 1 mW/channel from a single 3.5 V supply. With the discriminator threshold set to 4 times the noise level, a 16 nsec time-walk for 1.25 to 10fC signals is achieved using a time-walk compensation network. Irradiation tests at TRIUMF to a {Phi}=10{sup 14} protons/cm{sup 2} have been performed on the IC, demonstrating the radiation hardness of the complementarymore » bipolar process.« less
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信