热反射测量的二维传热考虑

D. Sarkar, P. Chakraborty, B. T. Beck, Z. Leseman
{"title":"热反射测量的二维传热考虑","authors":"D. Sarkar, P. Chakraborty, B. T. Beck, Z. Leseman","doi":"10.1115/IMECE2018-88657","DOIUrl":null,"url":null,"abstract":"In the Suspended ThermoReflectance (STR) technique a microcantilever is heated with a laser power at the free end of the microcantilever and as heat propagates through it, another laser is used to measure the temperature along the beam.[1] In this paper, the heat equation is solved for two-dimensional heat flow in the microcantilever to determine the material’s thermal conductivity and heat capacity. Two of the dimensions of the microcantilever, width and length, are significantly greater than the third dimension, the thickness, leading to the two-dimensional approximation. Two boundaries along the length of the structure and one boundary along the width are assumed to be under Dirichlet boundary conditions, while the other boundary has Neumann condition. The Neumann or flux condition has a Gaussian profile due to the nature of laser beam intensity. The heat equation is solved using under 3 different flux conditions: (1) Steady-state, (2) Transient, and (3) Periodic. A steady-state condition mimics the experimental condition when a continuous wave laser is used to heat the microcantilever’s tip. A transient condition is possible when quickly removing or adding the continuous wave laser’s flux from the microcantilever’s tip using a chopper. Finally, a periodic condition can be achieved when an electro-optic modulator is utilized experimentally. Closed form analytical expressions are evaluated against the finite element model and experimental results for microcantilever beams and micro-structures of Si that have lengths on the order of a mm, width on the order of 100 microns, and thicknesses of 1 micron or less.","PeriodicalId":307820,"journal":{"name":"Volume 8B: Heat Transfer and Thermal Engineering","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Dimensional Heat Transfer Considerations for Thermoreflectance Measurements\",\"authors\":\"D. Sarkar, P. Chakraborty, B. T. Beck, Z. Leseman\",\"doi\":\"10.1115/IMECE2018-88657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the Suspended ThermoReflectance (STR) technique a microcantilever is heated with a laser power at the free end of the microcantilever and as heat propagates through it, another laser is used to measure the temperature along the beam.[1] In this paper, the heat equation is solved for two-dimensional heat flow in the microcantilever to determine the material’s thermal conductivity and heat capacity. Two of the dimensions of the microcantilever, width and length, are significantly greater than the third dimension, the thickness, leading to the two-dimensional approximation. Two boundaries along the length of the structure and one boundary along the width are assumed to be under Dirichlet boundary conditions, while the other boundary has Neumann condition. The Neumann or flux condition has a Gaussian profile due to the nature of laser beam intensity. The heat equation is solved using under 3 different flux conditions: (1) Steady-state, (2) Transient, and (3) Periodic. A steady-state condition mimics the experimental condition when a continuous wave laser is used to heat the microcantilever’s tip. A transient condition is possible when quickly removing or adding the continuous wave laser’s flux from the microcantilever’s tip using a chopper. Finally, a periodic condition can be achieved when an electro-optic modulator is utilized experimentally. Closed form analytical expressions are evaluated against the finite element model and experimental results for microcantilever beams and micro-structures of Si that have lengths on the order of a mm, width on the order of 100 microns, and thicknesses of 1 micron or less.\",\"PeriodicalId\":307820,\"journal\":{\"name\":\"Volume 8B: Heat Transfer and Thermal Engineering\",\"volume\":\"157 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 8B: Heat Transfer and Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-88657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 8B: Heat Transfer and Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-88657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在悬浮热反射(STR)技术中,在微悬臂梁的自由端用激光加热微悬臂梁,当热量通过微悬臂梁传播时,使用另一个激光沿光束测量温度。[1]本文通过求解微悬臂梁内的二维热流方程来确定材料的导热系数和热容。微悬臂的两个维度,宽度和长度,明显大于第三个维度,厚度,导致二维近似。假设沿结构长度方向的两个边界和沿结构宽度方向的一个边界为狄利克雷边界条件,另一个边界为诺伊曼边界条件。由于激光束强度的性质,诺伊曼条件或通量条件具有高斯分布。用3种不同的通量条件(1)稳态、(2)瞬态和(3)周期来求解热方程。稳态条件模拟连续波激光加热微悬臂尖端的实验条件。当使用斩波器从微悬臂的尖端快速去除或增加连续波激光的通量时,可能会出现瞬态条件。最后,在实验中利用电光调制器可以达到周期性条件。针对长度为1毫米、宽度为100微米、厚度为1微米或更小的硅微悬臂梁和硅微结构的有限元模型和实验结果,对封闭形式的解析表达式进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-Dimensional Heat Transfer Considerations for Thermoreflectance Measurements
In the Suspended ThermoReflectance (STR) technique a microcantilever is heated with a laser power at the free end of the microcantilever and as heat propagates through it, another laser is used to measure the temperature along the beam.[1] In this paper, the heat equation is solved for two-dimensional heat flow in the microcantilever to determine the material’s thermal conductivity and heat capacity. Two of the dimensions of the microcantilever, width and length, are significantly greater than the third dimension, the thickness, leading to the two-dimensional approximation. Two boundaries along the length of the structure and one boundary along the width are assumed to be under Dirichlet boundary conditions, while the other boundary has Neumann condition. The Neumann or flux condition has a Gaussian profile due to the nature of laser beam intensity. The heat equation is solved using under 3 different flux conditions: (1) Steady-state, (2) Transient, and (3) Periodic. A steady-state condition mimics the experimental condition when a continuous wave laser is used to heat the microcantilever’s tip. A transient condition is possible when quickly removing or adding the continuous wave laser’s flux from the microcantilever’s tip using a chopper. Finally, a periodic condition can be achieved when an electro-optic modulator is utilized experimentally. Closed form analytical expressions are evaluated against the finite element model and experimental results for microcantilever beams and micro-structures of Si that have lengths on the order of a mm, width on the order of 100 microns, and thicknesses of 1 micron or less.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信