扩展目标跟踪的独立轴估计

F. Govaers
{"title":"扩展目标跟踪的独立轴估计","authors":"F. Govaers","doi":"10.1109/SDF.2019.8916660","DOIUrl":null,"url":null,"abstract":"The trend towards high resolution sensos in combination with a growing number of automotive applications where precise estimates of dense near-range objects are required, results in an enormous need for high performance algorithms for tracking extended targets. Conventionally, this is soved by an ellipse shape approximation of the object extent. In this paper a novel method to estimate the shape parameters of an ellipse using multiple measurements is proposed. By means of an Eigenvalue Decomposition of the measurement spread matrix, the half axis can be measured. A Gaussian model for the feature observations is derived. The performance and consistency is shown by means of Monte Carlo simulations in comparison to state-of-the-art methods in literature.","PeriodicalId":186196,"journal":{"name":"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On Independent Axes Estimation for Extended Target Tracking\",\"authors\":\"F. Govaers\",\"doi\":\"10.1109/SDF.2019.8916660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The trend towards high resolution sensos in combination with a growing number of automotive applications where precise estimates of dense near-range objects are required, results in an enormous need for high performance algorithms for tracking extended targets. Conventionally, this is soved by an ellipse shape approximation of the object extent. In this paper a novel method to estimate the shape parameters of an ellipse using multiple measurements is proposed. By means of an Eigenvalue Decomposition of the measurement spread matrix, the half axis can be measured. A Gaussian model for the feature observations is derived. The performance and consistency is shown by means of Monte Carlo simulations in comparison to state-of-the-art methods in literature.\",\"PeriodicalId\":186196,\"journal\":{\"name\":\"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SDF.2019.8916660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDF.2019.8916660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

高分辨率传感器的趋势与越来越多需要精确估计密集近距离物体的汽车应用相结合,导致对高性能算法的巨大需求,用于跟踪扩展目标。通常,这是通过物体范围的椭圆形状近似来解决的。本文提出了一种利用多次测量来估计椭圆形状参数的新方法。通过测量扩展矩阵的特征值分解,可以测量半轴。导出了特征观测的高斯模型。通过蒙特卡罗模拟,并与文献中最先进的方法进行了比较,证明了该方法的性能和一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Independent Axes Estimation for Extended Target Tracking
The trend towards high resolution sensos in combination with a growing number of automotive applications where precise estimates of dense near-range objects are required, results in an enormous need for high performance algorithms for tracking extended targets. Conventionally, this is soved by an ellipse shape approximation of the object extent. In this paper a novel method to estimate the shape parameters of an ellipse using multiple measurements is proposed. By means of an Eigenvalue Decomposition of the measurement spread matrix, the half axis can be measured. A Gaussian model for the feature observations is derived. The performance and consistency is shown by means of Monte Carlo simulations in comparison to state-of-the-art methods in literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信