快速高效的立体深度图计算

P. Ghosh, K. Venkatesh
{"title":"快速高效的立体深度图计算","authors":"P. Ghosh, K. Venkatesh","doi":"10.1109/3DTV.2013.6676651","DOIUrl":null,"url":null,"abstract":"We present here our approach to the problem of improving the efficiency of stereo depth map computation. The algorithm is applied on rectified images. Graph cut is used for energy minimization. The descriptors used are both SIFT and DAISY. This algorithm produces fast results of approximate disparity maps from two images. The main advantage of our algorithm is its efficiency and reduction of computation time, in spite of an improvement of the error performance. To achieve this, we initially use a sparse global matching technique using SIFT to determine the necessary labels and then find dense correspondence with DAISY.","PeriodicalId":111565,"journal":{"name":"2013 3DTV Vision Beyond Depth (3DTV-CON)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast and efficient computation of stereo depth maps\",\"authors\":\"P. Ghosh, K. Venkatesh\",\"doi\":\"10.1109/3DTV.2013.6676651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present here our approach to the problem of improving the efficiency of stereo depth map computation. The algorithm is applied on rectified images. Graph cut is used for energy minimization. The descriptors used are both SIFT and DAISY. This algorithm produces fast results of approximate disparity maps from two images. The main advantage of our algorithm is its efficiency and reduction of computation time, in spite of an improvement of the error performance. To achieve this, we initially use a sparse global matching technique using SIFT to determine the necessary labels and then find dense correspondence with DAISY.\",\"PeriodicalId\":111565,\"journal\":{\"name\":\"2013 3DTV Vision Beyond Depth (3DTV-CON)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 3DTV Vision Beyond Depth (3DTV-CON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DTV.2013.6676651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 3DTV Vision Beyond Depth (3DTV-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DTV.2013.6676651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种提高立体深度图计算效率的方法。将该算法应用于校正后的图像。图割用于能量最小化。所使用的描述符是SIFT和DAISY。该算法可快速生成两幅图像的近似视差图。该算法的主要优点是它的效率和减少计算时间,尽管改进了误差性能。为了实现这一点,我们首先使用稀疏全局匹配技术,使用SIFT确定必要的标签,然后找到与DAISY的密集对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast and efficient computation of stereo depth maps
We present here our approach to the problem of improving the efficiency of stereo depth map computation. The algorithm is applied on rectified images. Graph cut is used for energy minimization. The descriptors used are both SIFT and DAISY. This algorithm produces fast results of approximate disparity maps from two images. The main advantage of our algorithm is its efficiency and reduction of computation time, in spite of an improvement of the error performance. To achieve this, we initially use a sparse global matching technique using SIFT to determine the necessary labels and then find dense correspondence with DAISY.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信