基于Kernel的kinect手势识别

Daniela Ramı́rez-Giraldo, S. Molina-Giraldo, A. Álvarez-Meza, G. Daza-Santacoloma, G. Castellanos-Domínguez
{"title":"基于Kernel的kinect手势识别","authors":"Daniela Ramı́rez-Giraldo, S. Molina-Giraldo, A. Álvarez-Meza, G. Daza-Santacoloma, G. Castellanos-Domínguez","doi":"10.1109/STSIVA.2012.6340575","DOIUrl":null,"url":null,"abstract":"Category 4. A machine learning based methodology is proposed to recognize a predefined set of hand gestures using depth images. For such purpose, a RGBD sensor (Microsoft kinect) is employed to track the hand position. Thus, a preprocessing stage is presented to subtract the region of interest from depth images. Moreover, a learning algorithm based on kernel methods is used to discover the relationships among samples, properly describing the studied gestures. Proposed methodology aims to obtain a representation space which allow us to identify the dynamic of hand movements. Attained results show how our approach presents a suitable performance for detecting different hand gestures. As future work, we are interested in recognize more complex human activities, in order to support the development of human-computer interface systems.","PeriodicalId":383297,"journal":{"name":"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Kernel based hand gesture recognition using kinect sensor\",\"authors\":\"Daniela Ramı́rez-Giraldo, S. Molina-Giraldo, A. Álvarez-Meza, G. Daza-Santacoloma, G. Castellanos-Domínguez\",\"doi\":\"10.1109/STSIVA.2012.6340575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Category 4. A machine learning based methodology is proposed to recognize a predefined set of hand gestures using depth images. For such purpose, a RGBD sensor (Microsoft kinect) is employed to track the hand position. Thus, a preprocessing stage is presented to subtract the region of interest from depth images. Moreover, a learning algorithm based on kernel methods is used to discover the relationships among samples, properly describing the studied gestures. Proposed methodology aims to obtain a representation space which allow us to identify the dynamic of hand movements. Attained results show how our approach presents a suitable performance for detecting different hand gestures. As future work, we are interested in recognize more complex human activities, in order to support the development of human-computer interface systems.\",\"PeriodicalId\":383297,\"journal\":{\"name\":\"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STSIVA.2012.6340575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2012.6340575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

4级。提出了一种基于机器学习的方法,利用深度图像识别一组预定义的手势。为此,RGBD传感器(微软kinect)被用来跟踪手的位置。因此,提出了从深度图像中减去感兴趣区域的预处理阶段。此外,使用基于核方法的学习算法来发现样本之间的关系,适当地描述所研究的手势。提出的方法旨在获得一个表征空间,使我们能够识别手部运动的动态。获得的结果表明,我们的方法如何在检测不同手势时表现出合适的性能。作为未来的工作,我们有兴趣识别更复杂的人类活动,以支持人机界面系统的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kernel based hand gesture recognition using kinect sensor
Category 4. A machine learning based methodology is proposed to recognize a predefined set of hand gestures using depth images. For such purpose, a RGBD sensor (Microsoft kinect) is employed to track the hand position. Thus, a preprocessing stage is presented to subtract the region of interest from depth images. Moreover, a learning algorithm based on kernel methods is used to discover the relationships among samples, properly describing the studied gestures. Proposed methodology aims to obtain a representation space which allow us to identify the dynamic of hand movements. Attained results show how our approach presents a suitable performance for detecting different hand gestures. As future work, we are interested in recognize more complex human activities, in order to support the development of human-computer interface systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信