基于判别聚类的PolSAR图像分类

Haixia Bi, Jian Sun, Zongben Xu
{"title":"基于判别聚类的PolSAR图像分类","authors":"Haixia Bi, Jian Sun, Zongben Xu","doi":"10.1109/RSIP.2017.7958798","DOIUrl":null,"url":null,"abstract":"This paper presents a novel unsupervised image classification method for polarimetric synthetic aperture radar (PolSAR) data. The proposed method is based on a discriminative clustering framework that explicitly relies on a discriminative supervised classification technique to perform unsupervised clustering. To implement this idea, we design an energy function for unsupervised PolSAR image classification by combining a supervised softmax regression model with a Markov Random Field (MRF) smoothness constraint. In this model, both the pixel-wise class labels and classifiers are taken as unknown variables to be optimized. Starting from the initialized class labels generated by Cloude-Pottier decomposition and K-Wishart distribution hypothesis, we iteratively optimize the classifiers and class labels by alternately minimizing the energy function w.r.t. them. Finally, the optimized class labels are taken as the classification result, and the classifiers for different classes are also derived as a side effect. We apply this approach to real PolSAR benchmark data. Extensive experiments justify that our approach can effectively classify the PolSAR image in an unsupervised way, and produce higher accuracies than the compared state-of-the-art methods.","PeriodicalId":262222,"journal":{"name":"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"PolSAR image classification using discriminative clustering\",\"authors\":\"Haixia Bi, Jian Sun, Zongben Xu\",\"doi\":\"10.1109/RSIP.2017.7958798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel unsupervised image classification method for polarimetric synthetic aperture radar (PolSAR) data. The proposed method is based on a discriminative clustering framework that explicitly relies on a discriminative supervised classification technique to perform unsupervised clustering. To implement this idea, we design an energy function for unsupervised PolSAR image classification by combining a supervised softmax regression model with a Markov Random Field (MRF) smoothness constraint. In this model, both the pixel-wise class labels and classifiers are taken as unknown variables to be optimized. Starting from the initialized class labels generated by Cloude-Pottier decomposition and K-Wishart distribution hypothesis, we iteratively optimize the classifiers and class labels by alternately minimizing the energy function w.r.t. them. Finally, the optimized class labels are taken as the classification result, and the classifiers for different classes are also derived as a side effect. We apply this approach to real PolSAR benchmark data. Extensive experiments justify that our approach can effectively classify the PolSAR image in an unsupervised way, and produce higher accuracies than the compared state-of-the-art methods.\",\"PeriodicalId\":262222,\"journal\":{\"name\":\"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSIP.2017.7958798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSIP.2017.7958798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

针对偏振合成孔径雷达(PolSAR)数据,提出了一种新的无监督图像分类方法。该方法基于判别聚类框架,该框架明确地依赖于判别监督分类技术来执行无监督聚类。为了实现这一思想,我们将有监督的softmax回归模型与马尔可夫随机场(MRF)平滑约束相结合,设计了一个用于无监督PolSAR图像分类的能量函数。在该模型中,将像素级分类标签和分类器作为未知变量进行优化。从cloud - pottier分解和K-Wishart分布假设生成的初始化类标签开始,通过交替最小化能量函数w.r.t.对分类器和类标签进行迭代优化。最后,将优化后的类标签作为分类结果,并衍生出不同类的分类器作为副作用。我们将这种方法应用于真实的PolSAR基准数据。大量的实验证明,我们的方法可以有效地以无监督的方式对PolSAR图像进行分类,并且比比较的最先进的方法产生更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PolSAR image classification using discriminative clustering
This paper presents a novel unsupervised image classification method for polarimetric synthetic aperture radar (PolSAR) data. The proposed method is based on a discriminative clustering framework that explicitly relies on a discriminative supervised classification technique to perform unsupervised clustering. To implement this idea, we design an energy function for unsupervised PolSAR image classification by combining a supervised softmax regression model with a Markov Random Field (MRF) smoothness constraint. In this model, both the pixel-wise class labels and classifiers are taken as unknown variables to be optimized. Starting from the initialized class labels generated by Cloude-Pottier decomposition and K-Wishart distribution hypothesis, we iteratively optimize the classifiers and class labels by alternately minimizing the energy function w.r.t. them. Finally, the optimized class labels are taken as the classification result, and the classifiers for different classes are also derived as a side effect. We apply this approach to real PolSAR benchmark data. Extensive experiments justify that our approach can effectively classify the PolSAR image in an unsupervised way, and produce higher accuracies than the compared state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信