{"title":"基于判别聚类的PolSAR图像分类","authors":"Haixia Bi, Jian Sun, Zongben Xu","doi":"10.1109/RSIP.2017.7958798","DOIUrl":null,"url":null,"abstract":"This paper presents a novel unsupervised image classification method for polarimetric synthetic aperture radar (PolSAR) data. The proposed method is based on a discriminative clustering framework that explicitly relies on a discriminative supervised classification technique to perform unsupervised clustering. To implement this idea, we design an energy function for unsupervised PolSAR image classification by combining a supervised softmax regression model with a Markov Random Field (MRF) smoothness constraint. In this model, both the pixel-wise class labels and classifiers are taken as unknown variables to be optimized. Starting from the initialized class labels generated by Cloude-Pottier decomposition and K-Wishart distribution hypothesis, we iteratively optimize the classifiers and class labels by alternately minimizing the energy function w.r.t. them. Finally, the optimized class labels are taken as the classification result, and the classifiers for different classes are also derived as a side effect. We apply this approach to real PolSAR benchmark data. Extensive experiments justify that our approach can effectively classify the PolSAR image in an unsupervised way, and produce higher accuracies than the compared state-of-the-art methods.","PeriodicalId":262222,"journal":{"name":"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"PolSAR image classification using discriminative clustering\",\"authors\":\"Haixia Bi, Jian Sun, Zongben Xu\",\"doi\":\"10.1109/RSIP.2017.7958798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel unsupervised image classification method for polarimetric synthetic aperture radar (PolSAR) data. The proposed method is based on a discriminative clustering framework that explicitly relies on a discriminative supervised classification technique to perform unsupervised clustering. To implement this idea, we design an energy function for unsupervised PolSAR image classification by combining a supervised softmax regression model with a Markov Random Field (MRF) smoothness constraint. In this model, both the pixel-wise class labels and classifiers are taken as unknown variables to be optimized. Starting from the initialized class labels generated by Cloude-Pottier decomposition and K-Wishart distribution hypothesis, we iteratively optimize the classifiers and class labels by alternately minimizing the energy function w.r.t. them. Finally, the optimized class labels are taken as the classification result, and the classifiers for different classes are also derived as a side effect. We apply this approach to real PolSAR benchmark data. Extensive experiments justify that our approach can effectively classify the PolSAR image in an unsupervised way, and produce higher accuracies than the compared state-of-the-art methods.\",\"PeriodicalId\":262222,\"journal\":{\"name\":\"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSIP.2017.7958798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSIP.2017.7958798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PolSAR image classification using discriminative clustering
This paper presents a novel unsupervised image classification method for polarimetric synthetic aperture radar (PolSAR) data. The proposed method is based on a discriminative clustering framework that explicitly relies on a discriminative supervised classification technique to perform unsupervised clustering. To implement this idea, we design an energy function for unsupervised PolSAR image classification by combining a supervised softmax regression model with a Markov Random Field (MRF) smoothness constraint. In this model, both the pixel-wise class labels and classifiers are taken as unknown variables to be optimized. Starting from the initialized class labels generated by Cloude-Pottier decomposition and K-Wishart distribution hypothesis, we iteratively optimize the classifiers and class labels by alternately minimizing the energy function w.r.t. them. Finally, the optimized class labels are taken as the classification result, and the classifiers for different classes are also derived as a side effect. We apply this approach to real PolSAR benchmark data. Extensive experiments justify that our approach can effectively classify the PolSAR image in an unsupervised way, and produce higher accuracies than the compared state-of-the-art methods.