一种新的连续时间系统混合进化算法

G. L. Santosuosso
{"title":"一种新的连续时间系统混合进化算法","authors":"G. L. Santosuosso","doi":"10.1109/CDC.2001.980988","DOIUrl":null,"url":null,"abstract":"A novel evolutionary algorithm called atomic metaphor optimization strategy (AMOS) is proposed, which is designed for real-time analog optimization problems. This new evolutionary algorithm is integrated with the continuous time adaptive observer algorithm based on the Lyapunov stability theory, developed for classes of approximating functions with linear parametrization. The combined hybrid algorithm is applied to the online modeling of continuous-time nonlinear systems, via a nonlinearly parametrized neural approximation of the system dynamics.","PeriodicalId":131411,"journal":{"name":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AMOS-a new hybrid evolutionary algorithm for continuous time systems\",\"authors\":\"G. L. Santosuosso\",\"doi\":\"10.1109/CDC.2001.980988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel evolutionary algorithm called atomic metaphor optimization strategy (AMOS) is proposed, which is designed for real-time analog optimization problems. This new evolutionary algorithm is integrated with the continuous time adaptive observer algorithm based on the Lyapunov stability theory, developed for classes of approximating functions with linear parametrization. The combined hybrid algorithm is applied to the online modeling of continuous-time nonlinear systems, via a nonlinearly parametrized neural approximation of the system dynamics.\",\"PeriodicalId\":131411,\"journal\":{\"name\":\"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2001.980988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2001.980988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对实时模拟优化问题,提出了一种新的进化算法原子隐喻优化策略(AMOS)。这种新的进化算法与基于Lyapunov稳定性理论的连续时间自适应观测器算法相结合,该算法是针对具有线性参数化的近似函数类而开发的。该组合混合算法通过对系统动力学进行非线性参数化神经逼近,应用于连续时间非线性系统的在线建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AMOS-a new hybrid evolutionary algorithm for continuous time systems
A novel evolutionary algorithm called atomic metaphor optimization strategy (AMOS) is proposed, which is designed for real-time analog optimization problems. This new evolutionary algorithm is integrated with the continuous time adaptive observer algorithm based on the Lyapunov stability theory, developed for classes of approximating functions with linear parametrization. The combined hybrid algorithm is applied to the online modeling of continuous-time nonlinear systems, via a nonlinearly parametrized neural approximation of the system dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信