用于光伏系统的九电平级联多电平逆变器

Akhil Jammu, Vamshi Krishna Gajula, Yashwanth Guntuka, Mounika Dasari
{"title":"用于光伏系统的九电平级联多电平逆变器","authors":"Akhil Jammu, Vamshi Krishna Gajula, Yashwanth Guntuka, Mounika Dasari","doi":"10.26634/jee.15.4.18840","DOIUrl":null,"url":null,"abstract":"This paper presents an improved Cascaded Multilevel Inverter (CMLI) based on a highly efficient and reliable configuration for the minimization of the leakage current. The suggested technique also exhibits minimal switching and conduction losses in addition to having fewer switches. The proposed topology using the specified, high-frequency voltage is decreased by the Pulse Width Modulation (PWM) approach, voltage changes at the terminal and commonmode levels. Keeping away from high-frequency voltage changes results in the reduction in leakage current and a reduction in the size EMI filter. In addition, the continuation of the CMLI and the PWM method for 2m+1 levels is also shown, where m denotes quantity, solar energy, photovoltaic (PV) sources. The suggested PWM to cover all 2m+1, only one carrier wave is required levels of performance. Total Harmonic Distortion (THD) is the planned CMLI network current that meets the specifications of the Institute of Electrical and Electronics Engineers (IEEE) 1547 standard. The paper also includes a comparison of the proposed CMLI topology and the existing multilevel inverter (MLI) PV topology. The article presents the full features of the common-mode and photovoltaic voltage terminal analysis proposed by CMLI using switching function ideas, simulations, and experimental results.","PeriodicalId":403999,"journal":{"name":"i-manager’s Journal on Electrical Engineering","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nine-level cascaded multilevel inverter for PV systems\",\"authors\":\"Akhil Jammu, Vamshi Krishna Gajula, Yashwanth Guntuka, Mounika Dasari\",\"doi\":\"10.26634/jee.15.4.18840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an improved Cascaded Multilevel Inverter (CMLI) based on a highly efficient and reliable configuration for the minimization of the leakage current. The suggested technique also exhibits minimal switching and conduction losses in addition to having fewer switches. The proposed topology using the specified, high-frequency voltage is decreased by the Pulse Width Modulation (PWM) approach, voltage changes at the terminal and commonmode levels. Keeping away from high-frequency voltage changes results in the reduction in leakage current and a reduction in the size EMI filter. In addition, the continuation of the CMLI and the PWM method for 2m+1 levels is also shown, where m denotes quantity, solar energy, photovoltaic (PV) sources. The suggested PWM to cover all 2m+1, only one carrier wave is required levels of performance. Total Harmonic Distortion (THD) is the planned CMLI network current that meets the specifications of the Institute of Electrical and Electronics Engineers (IEEE) 1547 standard. The paper also includes a comparison of the proposed CMLI topology and the existing multilevel inverter (MLI) PV topology. The article presents the full features of the common-mode and photovoltaic voltage terminal analysis proposed by CMLI using switching function ideas, simulations, and experimental results.\",\"PeriodicalId\":403999,\"journal\":{\"name\":\"i-manager’s Journal on Electrical Engineering\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"i-manager’s Journal on Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26634/jee.15.4.18840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"i-manager’s Journal on Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26634/jee.15.4.18840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种改进的级联多电平逆变器(CMLI),该逆变器基于高效可靠的配置,可以最大限度地减少漏电流。除了具有更少的开关外,所建议的技术还具有最小的开关和传导损失。所提出的拓扑使用指定的高频电压,通过脉冲宽度调制(PWM)方法降低,电压在终端和共模电平发生变化。远离高频电压变化导致泄漏电流的减小和EMI滤波器尺寸的减小。此外,还显示了CMLI和PWM方法对2m+1电平的延续,其中m表示数量,太阳能,光伏(PV)源。建议的PWM覆盖所有2m+1,只需要一个载波的性能水平。总谐波失真(THD)是规划的CMLI网络电流,满足电气和电子工程师协会(IEEE) 1547标准的规范。本文还将提出的CMLI拓扑与现有的多电平逆变器(MLI) PV拓扑进行了比较。本文介绍了CMLI利用开关函数思想、仿真和实验结果提出的共模和光伏电压终端分析的全部特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nine-level cascaded multilevel inverter for PV systems
This paper presents an improved Cascaded Multilevel Inverter (CMLI) based on a highly efficient and reliable configuration for the minimization of the leakage current. The suggested technique also exhibits minimal switching and conduction losses in addition to having fewer switches. The proposed topology using the specified, high-frequency voltage is decreased by the Pulse Width Modulation (PWM) approach, voltage changes at the terminal and commonmode levels. Keeping away from high-frequency voltage changes results in the reduction in leakage current and a reduction in the size EMI filter. In addition, the continuation of the CMLI and the PWM method for 2m+1 levels is also shown, where m denotes quantity, solar energy, photovoltaic (PV) sources. The suggested PWM to cover all 2m+1, only one carrier wave is required levels of performance. Total Harmonic Distortion (THD) is the planned CMLI network current that meets the specifications of the Institute of Electrical and Electronics Engineers (IEEE) 1547 standard. The paper also includes a comparison of the proposed CMLI topology and the existing multilevel inverter (MLI) PV topology. The article presents the full features of the common-mode and photovoltaic voltage terminal analysis proposed by CMLI using switching function ideas, simulations, and experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信