不同中心路径邻域对广义熵内点法状态估计粗误差辨识的影响

H. Moayyed, Shabnam Pesteh, Vladimiro Miranda, J. Pereira
{"title":"不同中心路径邻域对广义熵内点法状态估计粗误差辨识的影响","authors":"H. Moayyed, Shabnam Pesteh, Vladimiro Miranda, J. Pereira","doi":"10.1109/SEST.2019.8849155","DOIUrl":null,"url":null,"abstract":"Classical Weighted Least Squares (WLS) State estimation (SE) in power systems is known for not performing well in the presence of Gross Errors (GE). The alternative using Correntropy proved to be appealing in dealing with outliers. Now, a novel SE method, generalized correntropy interior point method (GCIP) is being proposed, taking advantage of the properties of the Generalized Correntropy and of the Interior Point Method (IPM) as solver. This paper discusses how the choice of different central path neighborhoods, an essential concept in IPM, is critical in the identification of gross errors. The simulation results indicate that a one-sided infinity norm neighborhood successfully identifies outliers in the SE problem, making GCIP a competitive method.","PeriodicalId":158839,"journal":{"name":"2019 International Conference on Smart Energy Systems and Technologies (SEST)","volume":"363 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Impact of different central path neighborhoods on gross error identification in State Estimation with generalized correntropy interior point method\",\"authors\":\"H. Moayyed, Shabnam Pesteh, Vladimiro Miranda, J. Pereira\",\"doi\":\"10.1109/SEST.2019.8849155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical Weighted Least Squares (WLS) State estimation (SE) in power systems is known for not performing well in the presence of Gross Errors (GE). The alternative using Correntropy proved to be appealing in dealing with outliers. Now, a novel SE method, generalized correntropy interior point method (GCIP) is being proposed, taking advantage of the properties of the Generalized Correntropy and of the Interior Point Method (IPM) as solver. This paper discusses how the choice of different central path neighborhoods, an essential concept in IPM, is critical in the identification of gross errors. The simulation results indicate that a one-sided infinity norm neighborhood successfully identifies outliers in the SE problem, making GCIP a competitive method.\",\"PeriodicalId\":158839,\"journal\":{\"name\":\"2019 International Conference on Smart Energy Systems and Technologies (SEST)\",\"volume\":\"363 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Smart Energy Systems and Technologies (SEST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEST.2019.8849155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Smart Energy Systems and Technologies (SEST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEST.2019.8849155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

电力系统中经典加权最小二乘(WLS)状态估计在存在粗误差(GE)时表现不佳。在处理异常值时,使用Correntropy的替代方法被证明是有吸引力的。利用广义熵和内点法(IPM)的特性,提出了一种新的求解方法——广义熵内点法(GCIP)。本文讨论了不同中心路径邻域的选择,这是IPM中的一个重要概念,在识别严重误差中起着至关重要的作用。仿真结果表明,单侧无限范数邻域能够成功地识别出SE问题中的异常点,使得GCIP方法具有一定的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of different central path neighborhoods on gross error identification in State Estimation with generalized correntropy interior point method
Classical Weighted Least Squares (WLS) State estimation (SE) in power systems is known for not performing well in the presence of Gross Errors (GE). The alternative using Correntropy proved to be appealing in dealing with outliers. Now, a novel SE method, generalized correntropy interior point method (GCIP) is being proposed, taking advantage of the properties of the Generalized Correntropy and of the Interior Point Method (IPM) as solver. This paper discusses how the choice of different central path neighborhoods, an essential concept in IPM, is critical in the identification of gross errors. The simulation results indicate that a one-sided infinity norm neighborhood successfully identifies outliers in the SE problem, making GCIP a competitive method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信