利用径向基函数神经网络筛查乳房x线照片的异常

J. Dheeba, S. Tamil Selvi
{"title":"利用径向基函数神经网络筛查乳房x线照片的异常","authors":"J. Dheeba, S. Tamil Selvi","doi":"10.1109/ICCCCT.2010.5670778","DOIUrl":null,"url":null,"abstract":"Intelligent Computer Aided Diagnosis (CAD) Systems can be used for detecting Microcalcification (MC) clusters in digital mammograms at the early stage. CAD systems help radiologists in identifying tumor patterns in an efficient and faster manner than other detection methods. In this paper, we propose a new approach for detecting tumors in mammograms using Radial Basis Function Networks (RBFNN). Prior to the detection of MC clusters features from the image are extracted and analyzed. Gabor features are extracted from the image Region of Interest (ROI) to distinguish a tumor cluster and a normal breast tissue. Once the features are extracted, they are given as input to the supervised RBFNN. The output neuron determines whether the given input ROI is cancer tissue or not. We have verified the algorithm with 322 mammograms in the Mammographic Image Analysis Society Database (MIAS). The results shows that the proposed algorithm has a sensitivity of 85.2%.","PeriodicalId":250834,"journal":{"name":"2010 INTERNATIONAL CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Screening mammogram images for abnormalities using radial basis Function Neural Network\",\"authors\":\"J. Dheeba, S. Tamil Selvi\",\"doi\":\"10.1109/ICCCCT.2010.5670778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intelligent Computer Aided Diagnosis (CAD) Systems can be used for detecting Microcalcification (MC) clusters in digital mammograms at the early stage. CAD systems help radiologists in identifying tumor patterns in an efficient and faster manner than other detection methods. In this paper, we propose a new approach for detecting tumors in mammograms using Radial Basis Function Networks (RBFNN). Prior to the detection of MC clusters features from the image are extracted and analyzed. Gabor features are extracted from the image Region of Interest (ROI) to distinguish a tumor cluster and a normal breast tissue. Once the features are extracted, they are given as input to the supervised RBFNN. The output neuron determines whether the given input ROI is cancer tissue or not. We have verified the algorithm with 322 mammograms in the Mammographic Image Analysis Society Database (MIAS). The results shows that the proposed algorithm has a sensitivity of 85.2%.\",\"PeriodicalId\":250834,\"journal\":{\"name\":\"2010 INTERNATIONAL CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 INTERNATIONAL CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCCT.2010.5670778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 INTERNATIONAL CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCCT.2010.5670778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

智能计算机辅助诊断(CAD)系统可用于早期检测数字乳房x线照片中的微钙化(MC)簇。CAD系统帮助放射科医生以比其他检测方法更有效和更快的方式识别肿瘤模式。本文提出了一种利用径向基函数网络(RBFNN)检测乳房x线照片中肿瘤的新方法。在检测之前,从图像中提取和分析MC聚类特征。从图像感兴趣区域(ROI)中提取Gabor特征来区分肿瘤簇和正常乳腺组织。一旦特征被提取出来,它们就被作为输入输入到有监督的RBFNN中。输出神经元判断给定的输入ROI是否为癌组织。我们已经用乳房x线图像分析协会数据库(MIAS)中的322张乳房x线照片验证了该算法。结果表明,该算法的灵敏度为85.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Screening mammogram images for abnormalities using radial basis Function Neural Network
Intelligent Computer Aided Diagnosis (CAD) Systems can be used for detecting Microcalcification (MC) clusters in digital mammograms at the early stage. CAD systems help radiologists in identifying tumor patterns in an efficient and faster manner than other detection methods. In this paper, we propose a new approach for detecting tumors in mammograms using Radial Basis Function Networks (RBFNN). Prior to the detection of MC clusters features from the image are extracted and analyzed. Gabor features are extracted from the image Region of Interest (ROI) to distinguish a tumor cluster and a normal breast tissue. Once the features are extracted, they are given as input to the supervised RBFNN. The output neuron determines whether the given input ROI is cancer tissue or not. We have verified the algorithm with 322 mammograms in the Mammographic Image Analysis Society Database (MIAS). The results shows that the proposed algorithm has a sensitivity of 85.2%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信