不完全可观测条件下物理一致神经网络(PCNN)的物理方程发现

Haoran Li, Yang Weng
{"title":"不完全可观测条件下物理一致神经网络(PCNN)的物理方程发现","authors":"Haoran Li, Yang Weng","doi":"10.1145/3447548.3467448","DOIUrl":null,"url":null,"abstract":"Deep neural networks (DNNs) have been extensively applied to various fields, including physical-system monitoring and control. However, the requirement of a high confidence level in physical systems made system operators hard to trust black-box type DNNs. For example, while DNN can perform well at both training data and testing data, but when the physical system changes its operation points at a completely different range, never appeared in the history records, DNN can fail. To open the black box as much as possible, we propose a Physics-Consistent Neural Network (PCNN) for physical systems with the following properties: (1) PCNN can be shrunk to physical equations for sub-areas with full observability, (2) PCNN reduces unobservable areas into some virtual nodes, leading to a reduced network. Thus, for such a network, PCNN can also represent its underlying physical equation via a specifically designed deep-shallow hierarchy, and (3) PCNN is theoretically proved that the shallow NN in the PCNN is convex with respect to physical variables, leading to a set of convex optimizations to seek for the physics-consistent initial guess for the PCNN. We also develop a physical rule-based approach for initial guesses, significantly shortening the searching time for large systems. Comprehensive experiments on diversified systems are implemented to illustrate the outstanding performance of our PCNN.","PeriodicalId":421090,"journal":{"name":"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Physical Equation Discovery Using Physics-Consistent Neural Network (PCNN) Under Incomplete Observability\",\"authors\":\"Haoran Li, Yang Weng\",\"doi\":\"10.1145/3447548.3467448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural networks (DNNs) have been extensively applied to various fields, including physical-system monitoring and control. However, the requirement of a high confidence level in physical systems made system operators hard to trust black-box type DNNs. For example, while DNN can perform well at both training data and testing data, but when the physical system changes its operation points at a completely different range, never appeared in the history records, DNN can fail. To open the black box as much as possible, we propose a Physics-Consistent Neural Network (PCNN) for physical systems with the following properties: (1) PCNN can be shrunk to physical equations for sub-areas with full observability, (2) PCNN reduces unobservable areas into some virtual nodes, leading to a reduced network. Thus, for such a network, PCNN can also represent its underlying physical equation via a specifically designed deep-shallow hierarchy, and (3) PCNN is theoretically proved that the shallow NN in the PCNN is convex with respect to physical variables, leading to a set of convex optimizations to seek for the physics-consistent initial guess for the PCNN. We also develop a physical rule-based approach for initial guesses, significantly shortening the searching time for large systems. Comprehensive experiments on diversified systems are implemented to illustrate the outstanding performance of our PCNN.\",\"PeriodicalId\":421090,\"journal\":{\"name\":\"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3447548.3467448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447548.3467448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

深度神经网络(dnn)已广泛应用于物理系统监测和控制等各个领域。然而,物理系统对高置信度的要求使得系统操作员难以信任黑箱型深度神经网络。例如,虽然DNN在训练数据和测试数据上都表现良好,但当物理系统在完全不同的范围内改变其操作点时,历史记录中从未出现过,DNN可能会失败。为了尽可能地打开黑盒子,我们提出了一种物理-一致神经网络(PCNN),它具有以下性质:(1)PCNN可以缩小为具有完全可观察性的子区域的物理方程;(2)PCNN将不可观察区域减少到一些虚拟节点,从而导致网络的缩减。因此,对于这样的网络,PCNN也可以通过专门设计的深浅层次结构来表示其底层物理方程。(3)从理论上证明了PCNN中的浅神经网络对于物理变量是凸的,从而导致一组凸优化来寻求PCNN物理一致的初始猜测。我们还开发了一种基于物理规则的初始猜测方法,大大缩短了大型系统的搜索时间。在不同的系统上进行了全面的实验,证明了我们的PCNN的卓越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physical Equation Discovery Using Physics-Consistent Neural Network (PCNN) Under Incomplete Observability
Deep neural networks (DNNs) have been extensively applied to various fields, including physical-system monitoring and control. However, the requirement of a high confidence level in physical systems made system operators hard to trust black-box type DNNs. For example, while DNN can perform well at both training data and testing data, but when the physical system changes its operation points at a completely different range, never appeared in the history records, DNN can fail. To open the black box as much as possible, we propose a Physics-Consistent Neural Network (PCNN) for physical systems with the following properties: (1) PCNN can be shrunk to physical equations for sub-areas with full observability, (2) PCNN reduces unobservable areas into some virtual nodes, leading to a reduced network. Thus, for such a network, PCNN can also represent its underlying physical equation via a specifically designed deep-shallow hierarchy, and (3) PCNN is theoretically proved that the shallow NN in the PCNN is convex with respect to physical variables, leading to a set of convex optimizations to seek for the physics-consistent initial guess for the PCNN. We also develop a physical rule-based approach for initial guesses, significantly shortening the searching time for large systems. Comprehensive experiments on diversified systems are implemented to illustrate the outstanding performance of our PCNN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信