{"title":"不完全可观测条件下物理一致神经网络(PCNN)的物理方程发现","authors":"Haoran Li, Yang Weng","doi":"10.1145/3447548.3467448","DOIUrl":null,"url":null,"abstract":"Deep neural networks (DNNs) have been extensively applied to various fields, including physical-system monitoring and control. However, the requirement of a high confidence level in physical systems made system operators hard to trust black-box type DNNs. For example, while DNN can perform well at both training data and testing data, but when the physical system changes its operation points at a completely different range, never appeared in the history records, DNN can fail. To open the black box as much as possible, we propose a Physics-Consistent Neural Network (PCNN) for physical systems with the following properties: (1) PCNN can be shrunk to physical equations for sub-areas with full observability, (2) PCNN reduces unobservable areas into some virtual nodes, leading to a reduced network. Thus, for such a network, PCNN can also represent its underlying physical equation via a specifically designed deep-shallow hierarchy, and (3) PCNN is theoretically proved that the shallow NN in the PCNN is convex with respect to physical variables, leading to a set of convex optimizations to seek for the physics-consistent initial guess for the PCNN. We also develop a physical rule-based approach for initial guesses, significantly shortening the searching time for large systems. Comprehensive experiments on diversified systems are implemented to illustrate the outstanding performance of our PCNN.","PeriodicalId":421090,"journal":{"name":"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Physical Equation Discovery Using Physics-Consistent Neural Network (PCNN) Under Incomplete Observability\",\"authors\":\"Haoran Li, Yang Weng\",\"doi\":\"10.1145/3447548.3467448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural networks (DNNs) have been extensively applied to various fields, including physical-system monitoring and control. However, the requirement of a high confidence level in physical systems made system operators hard to trust black-box type DNNs. For example, while DNN can perform well at both training data and testing data, but when the physical system changes its operation points at a completely different range, never appeared in the history records, DNN can fail. To open the black box as much as possible, we propose a Physics-Consistent Neural Network (PCNN) for physical systems with the following properties: (1) PCNN can be shrunk to physical equations for sub-areas with full observability, (2) PCNN reduces unobservable areas into some virtual nodes, leading to a reduced network. Thus, for such a network, PCNN can also represent its underlying physical equation via a specifically designed deep-shallow hierarchy, and (3) PCNN is theoretically proved that the shallow NN in the PCNN is convex with respect to physical variables, leading to a set of convex optimizations to seek for the physics-consistent initial guess for the PCNN. We also develop a physical rule-based approach for initial guesses, significantly shortening the searching time for large systems. Comprehensive experiments on diversified systems are implemented to illustrate the outstanding performance of our PCNN.\",\"PeriodicalId\":421090,\"journal\":{\"name\":\"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3447548.3467448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447548.3467448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Physical Equation Discovery Using Physics-Consistent Neural Network (PCNN) Under Incomplete Observability
Deep neural networks (DNNs) have been extensively applied to various fields, including physical-system monitoring and control. However, the requirement of a high confidence level in physical systems made system operators hard to trust black-box type DNNs. For example, while DNN can perform well at both training data and testing data, but when the physical system changes its operation points at a completely different range, never appeared in the history records, DNN can fail. To open the black box as much as possible, we propose a Physics-Consistent Neural Network (PCNN) for physical systems with the following properties: (1) PCNN can be shrunk to physical equations for sub-areas with full observability, (2) PCNN reduces unobservable areas into some virtual nodes, leading to a reduced network. Thus, for such a network, PCNN can also represent its underlying physical equation via a specifically designed deep-shallow hierarchy, and (3) PCNN is theoretically proved that the shallow NN in the PCNN is convex with respect to physical variables, leading to a set of convex optimizations to seek for the physics-consistent initial guess for the PCNN. We also develop a physical rule-based approach for initial guesses, significantly shortening the searching time for large systems. Comprehensive experiments on diversified systems are implemented to illustrate the outstanding performance of our PCNN.