输电线路单端故障定位的人工神经网络方法

Zhihong Chen, J. Maun
{"title":"输电线路单端故障定位的人工神经网络方法","authors":"Zhihong Chen, J. Maun","doi":"10.1109/PICA.1997.599387","DOIUrl":null,"url":null,"abstract":"This paper describes the application of an artificial neural network-based algorithm to the single-ended fault location of transmission lines using voltage and current data. From the fault location equations, similar to the conventional approach, this method selects phasors of prefault and superimposed voltages and currents from all phases of the transmission line as inputs of the artificial neural network. The outputs of the neural network are the fault position and the fault resistance. With its function approximation ability, the neural network is trained to map the nonlinear relationship existing in the fault location equations with the distributed parameter line model. It can get both fast speed and high accuracy. The influence of the remote-end infeed on neural network structure is studied. A comparison with the conventional method has been done. It is shown that the neural network-based method can adapt itself to big variations of source impedances at the remote terminal. Finally, when the remote source impedances vary in small ranges, the structure of the artificial neural network has been optimized by the pruning method.","PeriodicalId":383749,"journal":{"name":"Proceedings of the 20th International Conference on Power Industry Computer Applications","volume":"349 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"126","resultStr":"{\"title\":\"Artificial neural network approach to single-ended fault locator for transmission lines\",\"authors\":\"Zhihong Chen, J. Maun\",\"doi\":\"10.1109/PICA.1997.599387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the application of an artificial neural network-based algorithm to the single-ended fault location of transmission lines using voltage and current data. From the fault location equations, similar to the conventional approach, this method selects phasors of prefault and superimposed voltages and currents from all phases of the transmission line as inputs of the artificial neural network. The outputs of the neural network are the fault position and the fault resistance. With its function approximation ability, the neural network is trained to map the nonlinear relationship existing in the fault location equations with the distributed parameter line model. It can get both fast speed and high accuracy. The influence of the remote-end infeed on neural network structure is studied. A comparison with the conventional method has been done. It is shown that the neural network-based method can adapt itself to big variations of source impedances at the remote terminal. Finally, when the remote source impedances vary in small ranges, the structure of the artificial neural network has been optimized by the pruning method.\",\"PeriodicalId\":383749,\"journal\":{\"name\":\"Proceedings of the 20th International Conference on Power Industry Computer Applications\",\"volume\":\"349 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"126\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th International Conference on Power Industry Computer Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PICA.1997.599387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th International Conference on Power Industry Computer Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICA.1997.599387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 126

摘要

本文介绍了一种基于人工神经网络的输电线路单端故障定位算法的应用。该方法与传统方法一样,从故障定位方程中选取故障前相量和输电线路各相电压电流叠加作为人工神经网络的输入。神经网络的输出是故障位置和故障电阻。利用神经网络的函数逼近能力,训练神经网络将故障定位方程中的非线性关系映射到分布参数线模型中。速度快,精度高。研究了远端馈入对神经网络结构的影响。并与常规方法进行了比较。结果表明,基于神经网络的方法能够适应远端源阻抗变化较大的情况。最后,在远源阻抗变化较小的情况下,采用剪枝法对人工神经网络结构进行了优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial neural network approach to single-ended fault locator for transmission lines
This paper describes the application of an artificial neural network-based algorithm to the single-ended fault location of transmission lines using voltage and current data. From the fault location equations, similar to the conventional approach, this method selects phasors of prefault and superimposed voltages and currents from all phases of the transmission line as inputs of the artificial neural network. The outputs of the neural network are the fault position and the fault resistance. With its function approximation ability, the neural network is trained to map the nonlinear relationship existing in the fault location equations with the distributed parameter line model. It can get both fast speed and high accuracy. The influence of the remote-end infeed on neural network structure is studied. A comparison with the conventional method has been done. It is shown that the neural network-based method can adapt itself to big variations of source impedances at the remote terminal. Finally, when the remote source impedances vary in small ranges, the structure of the artificial neural network has been optimized by the pruning method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信