混合能源系统移相全桥变换器的设计与仿真

O. Ibrahim, N. Yahaya, N. Saad, K. Y. Ahmed
{"title":"混合能源系统移相全桥变换器的设计与仿真","authors":"O. Ibrahim, N. Yahaya, N. Saad, K. Y. Ahmed","doi":"10.1109/ICIAS.2016.7824043","DOIUrl":null,"url":null,"abstract":"This paper presents design and Simulink implementation of zero voltage switching (ZVS) phase-shifted full bridge dc-dc converter. The phase-shifted full bridge PWM dc-dc converter is widely used in high power, high voltage applications due to the advantages of high power handling capability with low switching and conduction losses. The phase shift feature of the control signal allows ZVS thereby eliminating the switching losses during FET device transition. It also minimize the parasitic effect and conduction losses at high frequency operation thereby increase system efficiency. A 3kW, 100 kHz high frequency phase-shifted full bridge converter was design and simulated in Matlab/Simulink to analyze the system performance prior to experimental implantation. The converter is intended for hybrid energy systems (HES) application in which a state space controller will be developed with wider dynamics to accommodate variable input sources mostly from renewable energy resources like solar and wind power. The converter simulation results shows that the system achieved greater than 90% efficiency at full load current.","PeriodicalId":247287,"journal":{"name":"2016 6th International Conference on Intelligent and Advanced Systems (ICIAS)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Design and simulation of phase-shifted full bridge converter for hybrid energy systems\",\"authors\":\"O. Ibrahim, N. Yahaya, N. Saad, K. Y. Ahmed\",\"doi\":\"10.1109/ICIAS.2016.7824043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents design and Simulink implementation of zero voltage switching (ZVS) phase-shifted full bridge dc-dc converter. The phase-shifted full bridge PWM dc-dc converter is widely used in high power, high voltage applications due to the advantages of high power handling capability with low switching and conduction losses. The phase shift feature of the control signal allows ZVS thereby eliminating the switching losses during FET device transition. It also minimize the parasitic effect and conduction losses at high frequency operation thereby increase system efficiency. A 3kW, 100 kHz high frequency phase-shifted full bridge converter was design and simulated in Matlab/Simulink to analyze the system performance prior to experimental implantation. The converter is intended for hybrid energy systems (HES) application in which a state space controller will be developed with wider dynamics to accommodate variable input sources mostly from renewable energy resources like solar and wind power. The converter simulation results shows that the system achieved greater than 90% efficiency at full load current.\",\"PeriodicalId\":247287,\"journal\":{\"name\":\"2016 6th International Conference on Intelligent and Advanced Systems (ICIAS)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th International Conference on Intelligent and Advanced Systems (ICIAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAS.2016.7824043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th International Conference on Intelligent and Advanced Systems (ICIAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAS.2016.7824043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本文介绍了零电压开关(ZVS)移相全桥dc-dc变换器的设计和Simulink实现。移相全桥PWM dc-dc变换器由于具有高功率处理能力和低开关导通损耗等优点,在大功率、高压应用中得到了广泛的应用。控制信号的相移特性允许ZVS,从而消除FET器件过渡期间的开关损耗。它还最大限度地减少了高频工作时的寄生效应和传导损失,从而提高了系统效率。设计了一种3kW、100khz高频移相全桥变换器,并在Matlab/Simulink中进行了仿真,在实验植入前对系统性能进行了分析。该转换器旨在用于混合能源系统(HES)应用,其中将开发具有更广泛动态的状态空间控制器,以适应主要来自太阳能和风能等可再生能源的可变输入源。仿真结果表明,该系统在满载电流下的效率大于90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and simulation of phase-shifted full bridge converter for hybrid energy systems
This paper presents design and Simulink implementation of zero voltage switching (ZVS) phase-shifted full bridge dc-dc converter. The phase-shifted full bridge PWM dc-dc converter is widely used in high power, high voltage applications due to the advantages of high power handling capability with low switching and conduction losses. The phase shift feature of the control signal allows ZVS thereby eliminating the switching losses during FET device transition. It also minimize the parasitic effect and conduction losses at high frequency operation thereby increase system efficiency. A 3kW, 100 kHz high frequency phase-shifted full bridge converter was design and simulated in Matlab/Simulink to analyze the system performance prior to experimental implantation. The converter is intended for hybrid energy systems (HES) application in which a state space controller will be developed with wider dynamics to accommodate variable input sources mostly from renewable energy resources like solar and wind power. The converter simulation results shows that the system achieved greater than 90% efficiency at full load current.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信