不适定椭圆方程的最优小波解

Jinru Wang, Meng Wang
{"title":"不适定椭圆方程的最优小波解","authors":"Jinru Wang, Meng Wang","doi":"10.1109/IWCFTA.2012.11","DOIUrl":null,"url":null,"abstract":"In this paper, a Cauchy problem for two-dimensional Lap lace equation in the strip 0 ≤ × ≤ 1 is considered. This is a classical severely ill-posed problem. Connecting Shannon wavelet bases with a spectral integral of the Hermitian operator, we can obtain a regularized solution. Moreover, some sharp stable estimates between the exact solution and it's approximation is also provided.","PeriodicalId":354870,"journal":{"name":"2012 Fifth International Workshop on Chaos-fractals Theories and Applications","volume":"386 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Wavelet Solutions for Ill-posed Elliptic Equations\",\"authors\":\"Jinru Wang, Meng Wang\",\"doi\":\"10.1109/IWCFTA.2012.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a Cauchy problem for two-dimensional Lap lace equation in the strip 0 ≤ × ≤ 1 is considered. This is a classical severely ill-posed problem. Connecting Shannon wavelet bases with a spectral integral of the Hermitian operator, we can obtain a regularized solution. Moreover, some sharp stable estimates between the exact solution and it's approximation is also provided.\",\"PeriodicalId\":354870,\"journal\":{\"name\":\"2012 Fifth International Workshop on Chaos-fractals Theories and Applications\",\"volume\":\"386 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fifth International Workshop on Chaos-fractals Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCFTA.2012.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fifth International Workshop on Chaos-fractals Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCFTA.2012.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了带0≤x≤1的二维Lap lace方程的Cauchy问题。这是一个经典的严重不适定问题。将香农小波基与厄米算子的谱积分连接起来,可以得到正则解。此外,还给出了精确解与其近似值之间的清晰稳定估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Wavelet Solutions for Ill-posed Elliptic Equations
In this paper, a Cauchy problem for two-dimensional Lap lace equation in the strip 0 ≤ × ≤ 1 is considered. This is a classical severely ill-posed problem. Connecting Shannon wavelet bases with a spectral integral of the Hermitian operator, we can obtain a regularized solution. Moreover, some sharp stable estimates between the exact solution and it's approximation is also provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信