一类随机非线性系统的鲁棒自适应神经控制

Ruliang Wang, Chaoyang Chen
{"title":"一类随机非线性系统的鲁棒自适应神经控制","authors":"Ruliang Wang, Chaoyang Chen","doi":"10.1109/CIS.2010.117","DOIUrl":null,"url":null,"abstract":"In this paper, adaptive neural control is investigated for a class of nonlinear stochastic systems with stochastic disturbances and unknown parameters. Under the condition of all system states being available for feedback, by employing the back stepping method, a suitable stochastic control Lyapunov function is then proposed to construct an adaptive neural network state-feedback controller, and unknown parameters are reasonably disposed. It is shown that, the the closed-loop system can be proved to be global asymptotically stable in probability. The simulation results demonstrate the effectiveness of the proposed control scheme.","PeriodicalId":420515,"journal":{"name":"2010 International Conference on Computational Intelligence and Security","volume":"216 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Robust Adaptive Neural Control for a Class of Stochastic Nonlinear Systems\",\"authors\":\"Ruliang Wang, Chaoyang Chen\",\"doi\":\"10.1109/CIS.2010.117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, adaptive neural control is investigated for a class of nonlinear stochastic systems with stochastic disturbances and unknown parameters. Under the condition of all system states being available for feedback, by employing the back stepping method, a suitable stochastic control Lyapunov function is then proposed to construct an adaptive neural network state-feedback controller, and unknown parameters are reasonably disposed. It is shown that, the the closed-loop system can be proved to be global asymptotically stable in probability. The simulation results demonstrate the effectiveness of the proposed control scheme.\",\"PeriodicalId\":420515,\"journal\":{\"name\":\"2010 International Conference on Computational Intelligence and Security\",\"volume\":\"216 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Computational Intelligence and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2010.117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2010.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

研究了一类具有随机扰动和未知参数的非线性随机系统的自适应神经控制问题。在系统所有状态均可反馈的条件下,采用反步法,提出合适的随机控制Lyapunov函数构造自适应神经网络状态反馈控制器,并合理配置未知参数。结果表明,该闭环系统在概率上是全局渐近稳定的。仿真结果验证了所提控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Adaptive Neural Control for a Class of Stochastic Nonlinear Systems
In this paper, adaptive neural control is investigated for a class of nonlinear stochastic systems with stochastic disturbances and unknown parameters. Under the condition of all system states being available for feedback, by employing the back stepping method, a suitable stochastic control Lyapunov function is then proposed to construct an adaptive neural network state-feedback controller, and unknown parameters are reasonably disposed. It is shown that, the the closed-loop system can be proved to be global asymptotically stable in probability. The simulation results demonstrate the effectiveness of the proposed control scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信