改进利用陆地卫星数据对大面积土地覆盖变化的自动检测

Kuan Song, J. Townshend, Sunghee Kim, P. Davis, R. Clay, O. Rodas
{"title":"改进利用陆地卫星数据对大面积土地覆盖变化的自动检测","authors":"Kuan Song, J. Townshend, Sunghee Kim, P. Davis, R. Clay, O. Rodas","doi":"10.1109/AMTRSI.2005.1469836","DOIUrl":null,"url":null,"abstract":"Detection of land cover change using multi- temporal data is crucial for many Earth Science issues. We examine the potential of several alternative approaches for automated detection of land cover change using Landsat data. Specifically we test their efficacy in consistently detecting change for large areas by examining their performance for Eastern Paraguay. We used Landsat imagery with limited training data solely from 10 km squares located at one degree intersections. Traditional classifiers showed a substantial decrease in accuracy when extrapolating from one scene to multiple other scenes, whereas decision tree and support vector machine classifiers maintained accuracy.","PeriodicalId":302923,"journal":{"name":"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.","volume":"352 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Improving automated detection of land cover change for large areas using Landsat data\",\"authors\":\"Kuan Song, J. Townshend, Sunghee Kim, P. Davis, R. Clay, O. Rodas\",\"doi\":\"10.1109/AMTRSI.2005.1469836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detection of land cover change using multi- temporal data is crucial for many Earth Science issues. We examine the potential of several alternative approaches for automated detection of land cover change using Landsat data. Specifically we test their efficacy in consistently detecting change for large areas by examining their performance for Eastern Paraguay. We used Landsat imagery with limited training data solely from 10 km squares located at one degree intersections. Traditional classifiers showed a substantial decrease in accuracy when extrapolating from one scene to multiple other scenes, whereas decision tree and support vector machine classifiers maintained accuracy.\",\"PeriodicalId\":302923,\"journal\":{\"name\":\"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.\",\"volume\":\"352 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMTRSI.2005.1469836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMTRSI.2005.1469836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

利用多时相数据检测土地覆盖变化对许多地球科学问题至关重要。我们研究了利用陆地卫星数据自动检测土地覆盖变化的几种替代方法的潜力。具体地说,我们通过检查它们在巴拉圭东部的表现来测试它们在持续检测大范围变化方面的功效。我们使用的陆地卫星图像具有有限的训练数据,仅来自位于1度交叉路口的10平方公里。当从一个场景外推到多个场景时,传统分类器的准确率明显下降,而决策树和支持向量机分类器保持了准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving automated detection of land cover change for large areas using Landsat data
Detection of land cover change using multi- temporal data is crucial for many Earth Science issues. We examine the potential of several alternative approaches for automated detection of land cover change using Landsat data. Specifically we test their efficacy in consistently detecting change for large areas by examining their performance for Eastern Paraguay. We used Landsat imagery with limited training data solely from 10 km squares located at one degree intersections. Traditional classifiers showed a substantial decrease in accuracy when extrapolating from one scene to multiple other scenes, whereas decision tree and support vector machine classifiers maintained accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信